Bayes and Sequential Estimation in Hilbert Space Valued Stochastic Differential Equations

  • Bishwal, J.P.N. (Indian Statistical Institute)
  • Published : 1999.03.01

Abstract

In this paper we consider estimation of a real valued parameter in the drift coefficient of a Hilbert space valued Ito stochastic differential equation. First we consider observation of the corresponding diffusion in a fixed time interval [0, T] and prove the Bernstein - von Mises theorem concerning the convergence of posterior distribution of the parameter given the observation, suitably normalised and centered at the MLE, to the normal distribution as Tlongrightarrow$\infty$. As a consequence, the Bayes estimator of the drift parameter becomes asymptotically efficient and asymptotically equivalent to the MLE as Tlongrightarrow$\infty$. Next, we consider observation in a random time interval where the random time is determined by a predetermined level of precision. We show that the sequential MLE is better than the ordinary MLE in the sense that the former is unbiased, uniformly normally distributed and efficient but is latter is not so.

Keywords

References

  1. Acta Applicandae Mathematicae v.35 Maximum likelihood estimate for discontinuous parameter in stochastic hyperbolic systems Aihara, S.I
  2. Applied Math. Optimization Identification of a discontinuous parameter in stochastic parabolic systems Aihara, S.I
  3. Statist. Probab. Letters v.8 Infinite dimensional parameter identification for stochastic parabolic systems Aihara, S.I.;Bagchi, A
  4. App. Math. Optimization v.17 Parameter identification for stochastic diffusion equations with unknown boundary conditions Aihara, S.I.;Bagchi, A
  5. J. Math. Anal. Appl. v.160 Parameter identification for hyperbolic stochastic systems Aihara, S.I;Bagchi, A
  6. SIAM J. Cont. Optim. v.30 Regularized maximum likelihood estimate for an infinite dimensional parameter in stochastic parabolic systems Aihara, S.I
  7. Proc. Camb. Phil. Soc. v.48 Large sample theory of sequential estimation Anscombe, F.J
  8. Linear Stochastic Systems with Constant Coefficients : A Statistical Approch, Lecture Notes in Control and Information Sciences Arato, M
  9. Stochastics v.12 Parameer identification in infinite dimensional linear systems Bagchi, A.;Borkar, V
  10. Statistical Inference for Stochastic Processes Basawa, I.V.;Prakasa Rao, B.L.S
  11. Ann. Math. Statist. v.42 no.1271 The Bernsteinvon Mises theorem for Markov process Borwanker, J.D.;Kallianpur, G.;Prakasa Rao, B.L.S
  12. Sankhya Ser. A v.45 The Bernstein-von Mises theorem ofr a certain class of diffusion processes Bose, A
  13. Infinite Dimensional Linear Systems Curtain,R.;Pritchard, A
  14. Stochastic Processes, Freschrift in honour of G. Kallianpur The examples of parameter extimation for stochastic partial differential equations Huebner, M.;Han'minskii, R.Z.;Rozovskii, B.L;S. Cambanis(ed.);J.K. Ghosh;R.L. Karandikar(ed.);P.K. Sen(ed.)
  15. Prob. Theor. Rel Fields v.103 On the asymptotic properties of maximum likelihood estimators for parabolic stochastic PDEs Huebner, M.;Rozovskii, B.L
  16. Statistical Estimation : Asymptotic Theory Ibragimov, I.A.;Has'minskii, R.Z
  17. CBMS-NSF Reginal Conference Series in Applied Mathematics v.49 Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces Ito, K
  18. J. Korean Statistical Society v.25 no.2 Parameter estimation for an infinite dimensional stochastic differential equation Kim, Y.T
  19. Statist. Prob. Letters v.3 Asymptotic statistical inference for a stochastic heat flow problem Koski, T.;Loges, W
  20. Stochastics v.16 On minimum contrast estimation for Hilbert space valued stochastic differential equations Koski, T.;Loges, W
  21. Parameter Estimation for Stochastic Processes Kutoyants, Yu. A.;B.L.S. Prakasa Rao(Translated)(ed.)
  22. Identification of Dynamical Systems with Small Noise Kutoyants, Yu. A
  23. Prob. Math. Statist. v.4 A study of a one dimensional bilinear differential model for stochastic processes LeBreton, A.;Musiela, M
  24. Statistics of Random Processes Ⅰ, Ⅱ Liptser, R.S.;Shiryayev, A.N.
  25. Stoch. Proc. Appl. v.17 Girsanov theorem in Hilbert space and an application to the statistics of Hilbert space-valued stochastic differential equations Loges, W
  26. Statist. Decisions v.7 The Bernstein - von Mises theorem for a class of non-homogeneous diffusion processes Mishra, M.N
  27. Commun. Statist. - Stoch. Models v.10 Maximum likelihood estimation in linear infinite dimensional models Mohapl, J
  28. Commun. Statist. - Stoch. Models v.13 On estimation in planar Ornstein-Uhlenbeck process Mohapl, J
  29. Mathematical Notes v.12 Sequential estimation of the parameters of diffusion type processes Novikov, A.A
  30. Stochastic Modelling in Physical Oceanography Maximum likelihood estimators in the equations of physical oceanography Piterbarg, L.;Rozovskii, B.L.;R.Adlder(ed.);P.Muller(ed.);B.Rozovskii(ed.)
  31. Math. Methods Statist. v.6 no.2 On asymptotic problems of parameter estimation in stochastic PDEs : discrete time sampling Piterbarg, L.;Rozovskii B.L
  32. Theory of Random Processes (in Russian) v.9 The Bernstein - von Mises theorem for a class of diffusion processes Prakasa Rao, B.L.S
  33. Statistics : Applications and New Directions, Proc. ISI Golden Jubilee Conferences On Bayes estimation for diffusion fields Prakasa Rao, B.L.S.;J.K. Ghosh(ed.);J. Roy(ed.)
  34. Theory Prob. Appl. v.25 On the sequential estimation of the drift coefficient of a diffusion process with quadratic and nonquadratic losses Tikhov, M.S