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Application of GLIM
to the Binary Categorical Data

Sok, Yong U*

Abstract

This paper is concerned with the application of generalized linear interactive
modelling(GLIM) to the binary categorical data. To analyze the categorical data given
by a contingency table, finding a good-fitting loglinear model is commonly adopted.
In the case of a contingency table with a response variable, we can fit a logit model
to find a good-fitting loglinear model. For a given 24 contingency table with a binary
response variable, we show the process of fitting a loglinear model by fitting a logit

model using GLIM and SAS and then we estimate parameters to interpret the nature

of associations implied by the model.
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1. Introduction

The science of statistics deals with making decisions based on the observed data
in the face of uncertainty. In these days, the study of statistical science has been
accelerated by the development of computer science. By joining statistical theory and
methodology to the computational capabilities, we could obtain very powerful tools in
the analysis of a observed data such as categorical data. In practice, a categorical
data set is given by a form of contingency table. The interpretation of a contingency
table is based on analyzing associations between factors, and the ways of analyzing
associations are found by fitting a good model.

It is well known that a good - fitting loglinear model for two-or three-way
contingency table is very useful. But for the higher dimensional case, finding a
good-fitting loglinear model has so many difficulties in application because of its
complication. In the case of a contingency table with a response variable, we can fit
a logit model instead of finding a good-fitting loglinear model. In the sense of
dimension reductions, this methodology is very useful especially for the higher
dimensional case with a response variable.

In this paper, for a given 2‘contingency table with a binary response variable, we
can show the process of fitting a loglinear model by fitting a logit model using
GLIM and SAS, and then we estimate parameters to interpret the nature of
associations implied by the model. Sok{8] also has studied the application of GLIM to
the analysis of survival data. In Section 2, we discuss the way to find a good-fitting
logit model for a high dementional contingency table with a binary response variable.
In Section 3, we will find a good-fitting loglinear model for a given four-way

contingency table with a binary response variable by fitting a logit model using

GLIM and SAS. And finally, concluding remarks will be given in the final section.

2. Fitting a Logit Model

In many cases, the useful models for a given contingency table with a response

variable are a small subset of all loglinear models. For instance, in the case that we
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can choose a response variable from explanatory variables, we know that modelling
effects of explanatory variables on the response variable is more important than
modelling relationships among these explanatory variables. The explanatory variables
in the models may be continuous or categorical. When they are categorical, a subset
of loglinear models which is equivalent to the set of all logit models(See Cox{3] or
McCullagh and Nelder{5]) for the response variable is enough to study to find a
good-fitting model. The logit models for associations between the response variable
and the explanatory variables contain the same structure as the loglinear models.

For high dimensional case, Bishop[2] and Agresti{l] discussed the dimension
reductions when there is a response variable. In the case of the higher dimensional
contingency table with a response variable and several explanatory variables, we can
find a good-fitting model for the given data set by fitting a logit model instead of a
loglinear model directly. After finding a good-fitting logit model, we can choose a
loglinear model which corresponds to the logit model. When the response is a binary
variable which has two categories, this methodology is of the greatest interest. A
good-fitting loglinear model describes effects of explanatory variables, explains
associations and interactions between variables, and produces improved estimates of
response probabilities.

The logit models generalize when there are several categorical factors. Suppose
that there are three categorical factors A, B and C for the binary response. Let I
denote the number of levels of A, J the number of levels of B and K the number of

levels of C. Denote by M, the probability of response 1 when factor A is at level i,
factor B is at level j and factor C is at level k, so the sum of response probabilities,
Mijn + M = 1.
Hence, the complete logit model for a four-way contingency table with a binary
response variable can be written as follows :
Mijkl A B C AB AC BC ABC
log (g )=at B4 8P B LT AT BT B+ B Y
k2
where { = I1,--I, j = 1,-,J, k = 1, K, and A, B and C are the explanatory

variables with I, J, K levels respectively.
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3. Application of GLIM and SAS

For simplicity we focus on a four-way contingency table problem with a binary
response variable to illustrate for the higher dimensional case. Consider a following

contingency table problem in Table 1.

Table 1. A 2¢ Contingency Table Problem.

Accident Type

Collision Rollover
Severity Severity
Car Driver
Weight Ejected Not Not
Severe Severe
Severe Severe
No 350 150 60 112
Small
Yes 26 23 19 80
No 1878 1022 148 404
Standard
Yes 111 161 22 265

We have four categorical variables such as
= Severity of Accident ("Severe” or "Not Severe”)

= Accident Type ("Collision” or "Rollover”),

i

S
A
C = Car Weight ("Small” or "Standard”) and
D Driver Ejected ("No” or "Yes").

Since the variable S(Severity of Accident) may be influenced by the other
variables(A, C or D), it is reasonable to consider S, which is a binary variable, as
the response variable and the others as explanatory variables. So we will fit a logit

model to our data with 4831 observations.
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3.1 Application of GLIM

To find a good-fitting model, we can obtain the following Table 2 by the use of
GLIM(See Healy[4] and Murray[6]).
From the Table 2, it is concluded that the model having the main effects only fit

well among all possible models. To find significant interactions we can compute the

scaled deviance, Gz, which is reduced by adding one interaction as follows :
GHA+C+D | A+C+D+AC) = 731 — 553 = 1.78,
GXA+C+D| A+C+D+AD) 731 — 553 = 1.78 and
GHA+C+D | A+C+D+CD) = 731 — 471 = 260.

Thus the interactions are not significant under @ = 0.05. Therefore, we will choose

M.
log (372 ) =at B+ B4 B oo @D

i
as the best model. The corresponding loglinear model is givenyby
log( My )=p+ AP+ A +A0+23+256°+25+2 5
+AFHAH A P55
where i=1,2, j=12, k=12, and h=12 ~-—---—-----==->-->m= (3.2)
which is denoted by (AS, CS, DS, ACD).

Since we assume linear constraint on the parameters
B =B7=87=0
in GLIM coding, note that
a=25 Bf=2%
BE =215, and BF =212
Then the following estimates and the standard errors(s.e.) can be obtained from
GLIM output in the following Table 3.

a = -094, se(a) = 008

w’

£ =164, sel(Bf) =008

BE =034, se(BS) =009
B2 =103 and se(B?) = 010

-162 -



Table 2. GLIM Output for All Possible Models

Model G* df _value
None 737.89 7 0.00
A 136.47 6 0.00
C 73714 6 0.00
D 451.90 6 0.00
A+D 22.84 5 0.00
A+C 122.10 5 0.00
C+D 449.15 5 0.00
A+C+AC 12067 4 0.00
A+D+AD 21.12 4 0.00
C+D+CD 448,00 4 0.00
A+C+D 731 4 0.12
A+C+D+AC 553 3 0.14
A+C+D+AD 553 3 0.14
A+C+D+CD 471 3 0.20
A+C+D+AC+AD 359 2 0.17
A+C+D+AC+CD 361 2 0.17
A+C+D+AD+CD 1.89 2 0.40
A+C+D+AC+AD+CD 0.67 1 0.41
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The fact that the estimated average logit a is negative indicates an overall
tendency in Severity of Accident to be less "Severe” outcome than "Not Severe”
outcome. Classification of Accident Type as "Rollover” has a positive effect on the
logit for Severity of Accident. Thus it is estimated that "Rollover” of Accident Type
have a larger chance to be "Severe” outcome on Severity of Accident than “Collision”
of Accident Type, controlling Car Weight and Driver Ejected. The effect on the logit
is positive when Car Weight is classified "Standard” when Accident Type and Driver
Ejected are controlled. And the effect on logit is positive when Driver Ejected is
classified "Yes”, controlling Accident Type and Car Weight.

The estimatgd A-S, C-S and D-S partial odd " s ratios are given as follows :
e - g _ 019,
e P'= &% = 071 and

e_ﬁ = ¢ = 036 respectively.
A partial GLIM program and its output is shown in the followings and also the
complete GLIM program and the corresponding output can be accessed from the

author.
Table 3. A Partial Program Listing and Output Using GLIM

il ? $unit 8

[i) ? $factor a 2 c 2 d 2

lil FAC? $data acd s n

(il DAT? $read

[il REA? 111 150 500211112 172
il REA? 112 23 49212 80 99
[il REA? 1 21 1022 2900 2 2 1 404 552
i) REA? 1 2 2 161 272 2 2 2 265 287
[il ? Syvar s

il 2 $err b n

{il ? $fic : +a $
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[0] scaled deviance = 737.89 at cycle 3
[o] d. f. 7

o] scaled deviance = 136.47(change =

i

-601.4) at cycle 3

[o] d f. = 6 (change = -1)

[i1? $diser$

{o] estimate s.e. parameter
o] 1 -0.5562 0.03406 1

fo] 2 1.797 0.07955 A(2)

[o] scale parameter 1.000

[o] unit observed out of fitted residual
o] 1 150 500 182.21 -2.993
fo] 2 112 172 133.42 -3915
[o] 3 23 49 17.86 1.527
o] 4 80 99 76.79 0.773
fo] 5 1022 2900 1056.81 -1.343
fol 6 404 552 428.17 -2.466
[o] 7 161 272 99.12 7.796
fo] 8 265 287 222.62 5.997
[i] ? $fit arc+d $

fol] scaled deviance = 7.3090 at cycle 3

lo] df = 4

[i(] ?%diser$

[o] estimate | s.e. parameter
o] 1 -0.9401 0.08284 1

{ol] 2 1.639 0.08281 A(2)

o] 3 0.3367 0.08612 C(2)

o] 4 1.030 0.09891 D(2)

[o] scale parameter 1.000

- 165 -



3.2 Application of SAS
Using the procedure "PROC CATMOD;” in SAS(See SAS/STAT User's Guide[7]),
we can also find a good-fitting logit model (3.1) to the given data set. Note that,

here in SAS coding, we assume that a linear constraint on the parameters,
21:1924 = Z}ﬁ’;c = ;/5’1? = 0 instead of A7 =8 = 87 =0
in GLIM coding. Then we get the loglinear model (3.2) with
=213 Bi=2a%
Bi =25, and B8P =1k .
Then the computational results are obtained from SAS output in the following

Table 4. From this table, we have obtained the fact that the likelihood ratio

chi-square statistic value, which is equal to 7.31 in SAS output, is the same as the
deviance, G? in GLIM output for the main effect model.

And the complete SAS program and the corresponding output for three models
such as Model H =1 J K, Model H = 1 J K I*K and Model H =1 J K I*] J*K I*K.

will be given in Appendix A.

2 = -056, se(a) = 0.06,

Bf =082 = - Bf, se(BF) = 004,

BS =017 = - Bf, se(BS) = 004

BP = 0515 = — BP and se(BY) = 005

Table 4. A Partial SAS Output for the Main Effect Model
MAXIMUM LIKELIHOOD ANALYSIS OF VARIANCE TABLE

Source DF Chi-Square Prob
INTERCEPT 1 93.28 0.0000
I 1 1528 0.0001
J 1 391.54 0.0000
K 1 108.51 0.0000
LIKELIHOOD RATIO 4 7.31 0.1204
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ANALYSIS OF MAXIMUM LIKELIHOOD ESTIMATES

Standard Chi-

Effect Parameter Estimate Error Square Prob

INTERCEPT

4. Concluding Remarks

We have shown the process of fitting a logit model to find a good-fitting loglinear
model. A four-way cross-classification of variables A, C, D and S were considered

to illustrate models for the higher dimensions. We have fitted a model for the given

21 contingency table problem using GLIM and also the same model has been fitted
for the given problem using SAS in section 3.1 and 3.2 respectivelv. Consequently,
we can fit the same model and the same interpretation to our data set in either case
of applving GLIM or applying SAS.

Hence. we found the same good-fitting loglinear model for the given data set by
fitting the best logit model. In summary, it can be concluded that the best logit
model contains only the main effect terms for the factors, but no interaction terms.
That is, the model can be suggested for our data set as the following logit model

log (g7 | =a+ g1+ g5+ 8
where the scaled deviance, G° = 7.31 with degree of freedom 4.

Therefore, we can sav that "Rollover” of Accident Type makes more likely
"Severe” of Severity of Accident, controlling other two factors, and so do "Standard”
of Car Weight and "Yes” of Driver Ejected.

In theortical sense, this methodology could be extended to the higher (more than
four) dimensional cases, but it could not be applicable to practical situations because

of the dramatic increase in the number of cells and the complication caused by

possible interaction patterns.
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Appenxix A:The SAS Program and the Edited Output for Three Models

/* LOGIT MODEL USING SAS =/
DATA ONE;
DO I=1 TO 2;
DG K=1 TO 2;
DO J=1 TO 2;
INPUT COL?I?TH(?@TOL?';I‘PUT
YPUT COL : OUTPUT: CATMOD PROCEDURE
END:,END; END; END; Response: H Response Levels (R)= 2
CARDS; Weight Variable: COUNT Populations  ($)= 8
%0 1% ‘158 1%“2) Data Set: ONE Total Frequency (N)= 4831
1878 1022 148 404 Observations  (Obs)= 16
'111 161 22 265 POPULATION and RESPONSE PROFILES
§ Sample 1 J K Sample Size
PROC CATMOD: | I T
WEIGHT COUNT: 1 111 500
MODEL H = 1 ] K / ML NOGLS: 2 11z 4
T 3 1 21 172
oD 3211
MODEL H = 1 J K I*K / ML NOGLS: 5 1
RUN: JKR 1 6 21 2 272
7 2 21 552
MODEL H =1 J K I*] J*K I*K /ML NOGLS: 8 222 287
RUN: Response
MAXIMUM LIKELIHOOD ANALYSIS 1 1
Sub -2 Log Convergence 2 2
teration lteration  Likelihood Criterion
________________________________________ MAXIMUM LIKELIHOOD ANALYSIS OF VARIANCE TABLE
0 0 6697.1881 1.0000 Source Chi-Square  Prob
1 0 5945.462 01122 | mmmToosm oo somseemomoeoeooooooooosoomoe oo
2 0 5933.9881 0.001930 INTERCEPT 1 93.28 0.0000
3 Q 5933.9422 7.7374E-6 1 1 15.28 0.0001
4 0 5933.9422 1.685E-10 g{ 11 319385511 80000000()
N 3 X
) Parameter Estimates LIKELIHOOD RATIO 4 731 01204
Iteration 1 2 3 4
________________________________________________ ANALYSIS OF MAXIMUM LIKELIHOOD ESTIMATES
0 Q 9 Standard Chi-
é :8%% 8%% 8575:7;3 8;%32 Effect Parameter Estimate Error Square Prob
3 -05627 01683 08193 05151 it A T
. 5152 INTERCEPT 1 -0.5628 0.0583 93.28 0.0000
4 0.5628 0.1683 0.8193 05152 5 23 %%5‘%% %%‘ﬁk 319:_1 25% %0001
MAXIMUM LIKELIHOOTD A;S;LYSIS OF VARIANCE K b 05152 0.0495 10851 0.'00003:
. MAXIMUM LIKELIHOOD ANALYSIS OF VARIANCE TABLE
Source DF  Chi-Square Prob Source DF  Chi-Square Prob
———————————————————————————————————————————————— INTERCEPT i 7276 £,0000
INTERCEPT 1 91.94 0.000G i 1 18.22 0.0000
1 1 17.12 0.0000 J 1 194.35 0.0000
] 1 267.30 0.0000 K 1 60.94 0.0000
K 1 108.86 0.0000 Ix] 1 1.23 0.2680
*K 1 1.80 0.1799 J*k 1 2.85 0.0912
LIKELIHOOD RATIO 3 553 01371 K 1 293 0.0872
LIKELIHOOD RATIO 1 067 0.4134
ANALYSIS OF MAXIMUM LIKELIHSOOI‘? %STD&?TES
tandar 31—
Effect Parameter Estimate Errvor Square ANALYSIS OF MAXIMUM LIKELIHOOD EST[MATES
b Standard Chi-
Pro Effect Parameter Estimate Error Square  Prob
et 1 o oo ot [}V TERCEPT : O7e S Hm oo
o RCEFT ! o o o134 i 3 08577 00615 1435 00000
1 2 01971 00476 1712 K 4 04925  0O0B31 6094 00000
oo % N Ny
o000 8 07861 00481 26730 1sK 7 010% 0062 293 00872
K 4 05161 0.0495 10886 |
00000 T e e T T T e T T e
1<K 8 -0.0639 0.0476 1.80
0.1799
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