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The (k, ¢,) Replacement Policy for the System
subject to Two Types of Failure

Lee, Seong-Yoon'

Abstract

In this paper, we consider a new preventive replacement policy for the system
which deteriorates while it is in operation with an increasing failure rate. The system
is subject to two types of failure. A type 1 failure is repairable while a type 2 failure
is not repairable. In the new policy, a system is replaced at the age of ¢, or at the
instant the k™ type 1 failure occurs, whichever comes first. However, if a type 2
failure occurs before a preventive replacement is performed, a failure replacement
should be made. We assume that a type 1 failure can be rectified with a minimal
repair. We also assume that a replacement takes a non-negligible amount of time
while a minimal repair takes a negligible amouwnt of time. Under a cost structure
which includes a preventive replacement cost, a failure replacement cost and a
minimal repair cost, we develop a model to find the optimal (k, t,) policy which

‘mizes the expected cost per unit time in the long run while satisfying a system

*y constraint,
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1. Introduction

A considerable amount of work has been done on the maintenance policies for the
system that stochastically deteriorates with time[1,6]. In particular, when the system
is repairable, a decision has to be made as to when to replace the system and when
to repair it in order to operate the system most economically.

Nakagawal3] considered a model for determining the optimal number of failures N’
before the scheduled replacement time T, in which a failed unit undergoes minimal
repair between replacements regardless of the failure type. Nakagawal2] also
considered a replacement policy for the system which is exposed to two types of
failure. In this study, it is assumed that a type 1 failure is repairable and can be
rectified with a minimal repair while a type 2 failure is not repairable. Therefore, the
system should be replaced whenever a type 2 failure occurs. For this system, he
considered a replacement policy in which a system is replaced at a type 2 failure or
at the k" type 1 failure, whichever comes first.

In this paper, we combine these two results and consider a (k, t,) policy for the
system which is subject to two types of failure. In our (k, t,) policy, a system is
replaced at the age of t, or at the instant the k” type 1 failure occurs, whichever
comes first. However, if a type 2 failure occurs before a preventive replacement is
performed, a failure replacement should be made. The probability that each failure is
classified as a type i failure is p; (ps+pz=1) independent of time and other failures.
We assume that a replacement takes a non-negligible amount of time while a
minimal repair takes a negligible amount of time. We also assume that a minimal
repair restores the system to the condition it was in immediately prior to the failure.

The objective of this study is to develop a model to find the optimal (k, ¢,) policy
which minimizes the expected cost per unit time in the long run while satisfing the

constraint that the availability of the system should exceed a certain prespecified

value.

2. Notation & Assumptions
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Notation
Cm  cost of minimal repair

Cp, © cost of preventive replacement

Cs * cost of failure replacement ( Cr > Cp > Cm )

R,» @ mean time required to perform minimal repair

R, ' mean time required to perform preventive replacement

R; : mean time required to perform failure replacement ( Ry > R, > Rm )

t, ' planned preventive replacement age

k @ maximum number of Type 1 failures for preventive replacement

Ng(k, t) : number of minimal repairs performed in the interval (0, t)

t : observed time from system replacement until next failure(Type 1 or Type 2)
with failure rate h(t)

Ni(t) © number of Type i failures in period (0, t), where t represents time to

failure (i =1, 2 )

f(t) : probability density function for time to failure

F(t) : probability distribution function for time to failure

G(t) : probability distribution function for time to Type 2 failure

B(t) : probability distribution function for time to k" Type 1 failure

h(t) : system failure rate at time ¢
¢
H(t) : j;h(x)dx, cumulative hazard

p;  probability of Type { failure ( p; + p2 = 1)
gi * probability that case i occurs ( i = 1, 2, 3 )
T, © time to k™ Type 1 failure
Ty : time to Type 2 failure
UC(k, t,) : expected long run average cost under (k, t,) policy
M(k, t,) ' mean length of operation time during a cycle under (%, t,) policy
A(k, tp) © availability of the system under (k, t,) policy
Assumptions
1. The failure rate function h(t) is increasing.
2. A failure is detected immediately.

3. A minimal repair takes a negligible amount of time and does not affect failure
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rate of the system.

4. A replacement restores the system to like new.

3. The (k, t,) Replacement Model

3.1 Replacement policy

We assume two types of failure are possible during system operation. Type 1
failure is rectified by minimal repair or preventive replacement (PR), and does not
drastically affect system availability. Type 2 failure is irrepairable, meaning the
system needs a failure replacement (FR). The probability of each type of failure is p;
and pz, respectively.

There can be three replacement scenarios

Case 1 : preventive replacement at the k" Type 1 failure

Case 2 : preventive replacement at age ¢,

Case 3 : failure replacement immediately after Type 2 failure

Let g; represent the probability of a case { occurrence. Type 1/Type 2 failures
follow a non-homogeneous Poisson process with intensity functions pjh(t)/pah(t),
respectively, both processes are independent, and the combined process creates a
non-homogeneous Poisson process with intensity function A(t). q; can be computed as
follows:

1) case 1
Case 1 happens if at least k failures occurs during (0, t,) and the first k failures

of these are Type 1 failures. So,

& - H(t,)”
q:= pl"”zke m")——%i- (1)

2) case 2
Case 2 happens if min{Ty, T; t,) = t,. That is to say, Type 2 failure does not

occur during (0, t;) and the number of Type 1 failures during (0, tp) is less than k.
So,

— ”
go= & BHH) :ZJbe—o.H(t,) [1’11:'(@] ®
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3) case 3
Case 3 happens if min{T«, Ty, t,} = Ty
This means that 7Ty is less than ¢, and the number of Type 1 failures during (0, Ty

is less than k. So,

gs= f" 2) -5 HD [DlH(t)]ndG(t) ?

or g3 = I- qi- g
T« and Ty have probability distribution function B(¢) and G(t) respectively and
B(t), b(t), G(t), g(t) can be computed as follows:

B(t) =Pl T« <t}

= Pr{ the number of Type 1 failures during (0,t] is greater than or equal to k }

= Pr{ N(t) 2 k}

_ S —nme 01 H(H)”

= 1- g ,—ni— )

k-1

_ dB(® _ -nmn (5 (O]
b(t) P prh(t) e = 1)1 (5)
G(t) =Pr{ Ty <t}

= Pr{ Type 2 failure occurs at the age ¢ }

=1 - g "HO (6)
gv) = LD - ppp) o )

g1, @2, gz also can be obtained by

ar = fo "1 6By - fo PR 8)

a: = [ [ dBOdGD) = (1-Be)1-G1y) (9
t}

as = [ (1-BWAGH

fo"g 21 H(D [le(t)]" 4GP 10

i
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3.2 Expected length of cycle, E(L)

The length of cycle(L) is completed each time a failure replacement or preventive
replacement takes place and depends both on the time of failure replacement and
preventive replacement.

{ L1 : Ry, + T« with probability q:
L={L2:Ry,+* ¢ with probability gz an
{ L3 : Ry + Ty with probability g3
The expected length of cycle, E[L], is

t 4
E[L] = fo K1— G(D)B(H + tA{I-Blt)H1-G(ty)) + fo {1~ B(9)dG(
+ (qrtqz)*R, + qs*R;

= M(k, tp) + (qi+q2)*R, + qs*Ry (12)

where M(k, t,) is the mean age of the system during a cycle
t
Mk, t,) = [ K1 G(8)dB() + t(1-B(t)H{1-G(ty)

. fot't(l—B(t))dG(t) (13)

3.3 Expected total cost, E(C)

A cycle is completed each time a replacement takes place, and costs(C) incurred in
a cycle is given by the total costs of minimal repairs and the costs of either
preventive replacement or failure replacement.

Let Ni represent the number of minimal repairs during .a cycle given a case I
occurrence ( i = 1, 2, 3 ).

To find the total costs of minimal repairs, we should know the expected number of
minimal repairs for three separate cases, E(Ni). The expected number of minimal
repairs and expected total cost for each three case is given by

1) case 1
E(N1) = E[Ng(k, t,) | Tt t,4t, Ni(D)=2Fk]

= k-1 (14)
E(Cl) = C, + Cn * E(NI1)
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= Cp + Cm * (k-1) (15)
2) case 2

E(N2) =E{Ng(k,t,) | Tp t, Ni(t,)<F]

= 2onP[Nl(t,,)=n | Tty Ni(8,) <]
gonP[Nx(t,) =n, T/ t,, Ni(t,)<k]

J2l oty Ny(t,) <k

ATt 2 nAAN(1)= 7]

q2
g ~RHY gonﬂNx(t,)= n)
B g2
= L e_”zH(')) Ei)n e‘P|H(‘:) [le'(te)]n (16)
a2 n= n.
E(C2) = Cp + Cm * E(N2)
— n
- - H(t
- Cp + Cm * __1_ e p2 H(ty ) 2)” e n H(t,) [pl '( 2)] an
2 n= n.
3) case 3
E(N3) =EINR(k, tp) I T/< tp,Nl(tp)<k]
= ZOnP[Nl(T,)=nI Tty Ni(T)<E)
Z_: nPIN,(T)) = n, T t,, Ni(TP< k]
- A TAt, N(Tp<H
S nFLN(T) = n, TC4)
N as
ty k=
[ 53 PN ()= mldG(H
o a3
1 & [ H®L”
=—;f., gne ””(')——la———dG(t) (18)
E(C3) = C; + Cm * E(N3)
= Cr+ Cm * 1 'Z{) ThHO LIRS [”‘H(t)] dG(d) (19)
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Probabilities for these cases are qi, ¢z @3 respectively, and expected total cost
E(C) is computed as follows:

E(C) = q*E(C1) + q#*E(C2) + qs*E(C3) (20)

3.4 Expected long run average cost, UC(k, t,)

In maintenance policy study, a cycle is completed when either a failure replacement
or preventive replacement is made. The system probabilistically begins again, and
each replacement continues a renewal.

Because the length of a cycle varies, it may be meaningless to compare
alternatives based upon total cost for the cycle. Therefore it may be necessary to
employ the concept of stochastical average cost, that is expected long run average
cost, to the problem. By using the Renewal Reward Process [5], expected long run
average cost UC(k, t,) is given by:

Expected total cost incurred during a cycle

UClk, t,) =
Expected length of cycle

E[C]

& —_— (21)
E(L]

3.5 System availability, A(k, t,)

Assuming only two states for a system, up or down, system availability A(k,t)
will describe the expected amount of time the system is up during a cycle divided by

the expected time of a cycle,

Mean life during a cycle

Alk,t) =
Expected length of a cycle
We assume downtime for minimal repairs as negligible, so system availability for
age tp, A(k, tp) is
Mk, t,)

Alk, tp) = ——— (22)
E(L]

where M(k, t,) denotes the mean operational time during a cycle (see equation (13))
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4. Weibull Example

Let us assume, as is often the case, the system has a Weibull distribution with
shape parameter o and scale parameter A. The probability distribution function F(t)

is given by

F(t) =1- e a>1, A>0, t=0 (23)
the probability density function f(t) by

)= @ 2t e Y 2>1, A>0, t=0 (24)

failure rate h(t), a conditional probability density function, by

e

h(t) = —————m—= =g At} a>1, 1>0, t20 (25)
I-F(t)

and the hazard function H(t) by

4
H(t)= foh(s)ds = (AD° a>1, i>0, t20 (26)

If the shape parameter ¢ is 1.0, then the failure rate A(t) will be the constant A,

which corresponds to an Exponential distribution with function
F(t)=1-e a>1, A>0, t20 @7

It means that, by virtue of its memoryless property, preventive replacement is
unnecessary as the new system will be equally as good and bad as the old one.

There are two types of failure, (Type 1, Type 2) as previously shown, with
probabilities of p; and p», respectively.

The failure rate of Type 1 failure is p;h(t) at age ¢,
and the failure rate of Type 2 failure is pzh(t) at age t.

From (25) and (26) above, the probability functions B(t), b(t), G(t), g(t) for a >1,
A>0, t=0, and the probabilities for cases g1, gz g3 are

B(t) =1 - ge—mﬂ(o [ H(D]

n!

~nan kA [0 (4 »°1”
n= n‘

-1- e (28)
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b(t) = pih(t) e " H?

1

(o H(H)*!
(k—

!

—niipe [ (AD P!

=pia At e
(&—1)!
G(t) =1 ~ & »H
= J - e—h(ﬂt)"
g(t) = pzh(t) e "H0
= pra A ta—l e‘l’z(/lt)"
-muy _H(t)"
ar = plngke n!
ot oG 2 (/lt)‘”'
g = e P HW — by H(ty [DlH'(tg)]
"= n:

PRICIY i} [p(at,)°]”
n!

s _fo g -p M) [PlH(t)]" A2HDIT 4

=f“ st _[n(A9°]"
n!

0 n=

p2a

A° ta-'l e—(dl)”dt

E(C) = q;*E(C1) + q#*E(C2) + qs*E(C3)
=qr*[ Co+ Cm * (k-1) ]

*Qr % [ Cp+ Cpx - g7 U0 i‘on e G Ity (At)°)”
a2 n= nl y)

+Q3*[Cf+Cm*

A PR e [ (49" pane
p fo ;gne hilagr A A2 ] o ] * poh(t) e G gy 7
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(30)

(31)

(32)

(33)

(34)



=qr*x[ Co* Cm* (k-1) ]

1 -Gy ‘Elb [ (At)° 1"
+q2*[cp+cm"‘qze n=n )

b [» (M)]
+Q3*[Cf+Cm* og LY 4 WL AR CANE WY

x pra A°t Ve W at (35)

S —p Gy LD (/Ue)a]” —p (A"
E[L]=tp*:gep(') ln! e
s <V —p(iD° [Pl(ﬁt)a]n —p(iD*
+ ﬁ)t ge h(an o pzh(t) e dt
b e w2401
+ A te P (if plh(t)e n(Ah l(k_l)! dt

+

(qi+q2)*Ry, + qs*Ry

. * i [ﬂl(:‘te) ] e—(“‘)"

s [m(/‘__f) L e (ane e ar

b -G . Lo (ane1!
+ foe (D" pra (A9 —lzk_—_l)T_— dt

+ (qi+qz)*R, + q3*Ry (36)

S (At)°1" _Gigye
M(k, t,) = tp * g———L——[pl o e

- pza (AD" e™ " at

X f" SHVACLE
0 n=
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ho L
+ j(; e Y pra (At)“—[—pl((?;—i;!l’—dt (37

In summary, the objective function of our model is

Min UC(k, tp)
k, ¢
E[C]
= Min ——— (38)
k, t, E[L]

And the constraint of our model is given by
Alk, t,) = ¢
Mk, tp)
- _— 2 § (39)
EfL]

5. The Optimization Procedure

Due to the complex form of the equations, we could not prove any properties(such
as convexity or unimodality) for the cost function which could be useful in the

search procedure. However, our computational experience suggests that for a fixed

value of k, the cost function UC(k,t,) is unimodal with respect to t,. Furthermore, if
we let ¢(k) denote the optimal value of t, for a given k, our computational

experience suggests that UC(k, £3(k)) is also unimodal with respect to k. These

properties observed from the numerical experiments can be exploited effectively in the
search procedure to find the optimal policy. To illustrate these properties, we provide
the following example.

In the example we assume that the time to failure follows a Weibull distribution

with a shape parameter a and a scale parameter A. For a Weibull distribution, a
failure rate function and a cumulative hazard function are given by A(f)=aA"t""!,

H(D=(AD® respectively. We assume that a>1 because a preventive maintenance
does not have to be performed if the failure rate function is non-increasing. In the

example we set @ =3.0, 4=1/1,350. Other parameter values are given by p;=038,
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p2=0.2, R=32, R,=16, C=37,500, C,=25,000, C»=1,000, £=0.98.
Figure 1 shows the behavior of the cost function, UC(k, t,), for a given value of k

as k varies from 1 to 8 As shown in the figure, the cost function, UC(k, t,), is

unimodal with respect to ¢, for a fixed value of k. To show the behavior of the cost
function, UC(k, £;(k)), we provide the policy comparisons for each value of k in
Table 1. In this table, the values of A(k, £;(k) as well as those of UC(k, £,(k)) are

provided. From the table, we see that UC(k, £,(k)) is unimodal with respect to k and

the optimal policy occurs when k is 5 and ¢, is 2,255. When the optimal policy is
used, the expected cost incurred per unit time is 18.682 and the availability of the

system is 0.9863.

23 ——K=1
225
22 —B—K=2
218
5,' 21 —h—K=3
5] 205
S 2 E——t
195
19 —~—K=5
185
1000 2000 3000 4000 5000 6000 7000 8000 8000 10000 |—e—K=g
tp
——K=7

Figure 1. Behavior of the cost function UC(k, t,)

Table 1. Values of (&), UC(k, (k) and A(k, t,(k) for each value of k

k 1 2 3 4 5 6 7 8

(k) 2754 2499 2383 2308 2255 2219 2197 2186
UC(k, (k) 22.454 19.562 18.881 18.707 18.682 18.691 18.701 18.712
}A(k, £5(k) 0.9843 0.9860 0.9862 0.9863 0.9863 0.9863 0.9863 0.9863
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