The Journal of GIS Association of Korea, Vol. 7, No.2, pp.271-282, October 1999

CIS-54 A0l J|HE 028 B7H =01 giAto] M)
31 o)

Performance of Spatial Join Operations

using Multi-Attribute Access Methods
Byungyeon Hwang

(@]
g

12

2 =xdMe 9e-54 HolBe g3t 29 ANE 58702 FHshs A9 719 S)(Spatial Join) £
ZE AT Y, OE-44 vlolEE vl 93 7129 goke "ab_iqu == At ER=e} [/0 A
o Bz} A Atk fEe o] =& FilA AQ %El 5 Eg)7} 7129 wlojemo)z Al2wle 4
Q7o Bol A= BERE el Aol A RYFED. o)RL §f Efy} JlEe giRpge
B-EZE o]8sh= A7l 4A 7EE & Uvke 2 vt It 292 2= I 2 G R
Eg), B-E2, KDB E2, § E&jd] disiy 45B7tE 538k Ae%rt 29 AL 5 Edr) A o)
HE 2 37 29 Al disjx o2 A9 /HERD ddides 953 Ads Hezo

rsL'
m[o

ABSTRACT : In this paper, we derive an efficient indexing scheme, SJ tree, which handles multi-attribute
data and spatial join operations efficiently. In addition, a number of algorithms for manipulating
multi-atiribute data are given, together with their computational and I/O complexity. Moreover, we show
that 5] tree is a kind of generalized B-tree. This means that S tree can be easily implemented on existing
built-in B-tree in most storage managers in the sense that the structure of SJ tree is like that of B-tree.
The spatial join operation with spatial output is benchmarked using R-tree, B-tree, K-D-B tree, and 9 tree.
Results from the benchmark test indicate that S] tree outperforms other indexing schemes on spatial join

with point data.
1. Introduction usually used in comjunction with a relational
database management system [9, 16]. In that
A spatial join is one of the most common context, a join is said to combine entities from
operations in spatial databases. The term "join" is two data sets into a single set for every pair of

F=HEAS 973 F7E7] 319 post-doc Aol s FHEH UL
2) 7}E doiatw 7738 (Dept. of Computer Engineering, The Catholic University of Korea, 43-1, Yokkok
Wonmi-Gu, Puchon, Kyong Ki-Do 420-743, Korea)

271

elements in the two sets that satisfy a particular
These conditions usually involve
specified attributes that are common to the two

condition.
sets. In the spatial variant of the join, the
condition is interpreted as being satisfied when
the elements of the pair cover some part of the
space that is identical.

The spatial join problem has been studied
both algorithmically and empirically for a variety
of spatial data structures. Spatial join algorithms
for regular grid files [10] were first investigated
in [1]. The grid file was also used as the spatial
when the
examined from the perspective of creating a
spatial join index [15]. In this case, the spatial

data structure spatial join was

join indexing simulations were on grid files
node-splitting rules. These
simulations showed that grid files with a regular

using differing

decomposition result in considerably fewer leaf
node intersections between two joining structures.
Spatial joins were also examined using the
generalized tree [8], an abstracted hierarchical
data structure similar to an R-tree [9]. Using cost
models on artificial data, the generalization trees
were shown to outperform join indices if there
was either high data structure update rates, or
high levels of join selectivity. Other studies
examined the R*tree [3] in the context of

composed large

polygons [3, 4]. In this case, various acceleration

spatially joining maps of
techniques were compared for improving CPU
speed as well as I/O performance. Once a
candidate polygons was

geometric filtering were used prior to the final

set of obtained,
exact geometry testing.
A different approach makes use of the seeded

tree [13]. This structure was designed to speed

o
oF
re

272

the more complex spatial join process when one
of the two maps being joined is the result of an
intermediate operation such as a selection, The
seeded tree is constructed by copying the
internal node structure of one map into the
second map, and then the features are inserted
into the second map. This replication of the
internal node structure greatly accelerates the join
process as there is a oneto-one mapping
between internal nodes in the two maps. The
application of global clustering to a modified
R*tree was studied [2]. Modified R*-tree with
global

expensive in terms of CPU construction costs

clustering was found to be more
and data storage requirements than the standard
unclustered R*-tree. Experimentation with the
clustered R*-tree showed, however, that spatial
joins were significantly improved, primarily
because of greatly decreased I/O costs. Finally,
in the data-parallel domain, the spatial join has
been studied in the algorithmic and empirical
context [11, 12]. Experimentation indicated that
the data-parallel PMR quadtree [14] significantly
outperformed data-parallel R-trees and Re-trees
[6] primarily because the PMR quadtree’s regular
decomposition is well-suited to the data-parallel
domain. In the data-parallel domain, commun-
ication bottlenecks during a spatial join are
greatly reduced by the regular decomposition of
the PMR quadiree and the ability to quickly
correlate a region in one map with a
corresponding region in a second map. This
ability to correlate regions will be seen to have a
similar ~ effect the

sequential domain as the size' of the output of

on the performance in
the spatial join increases with respect to the

large of the two inputs.

EHS-54 Mol J[de olg8t 32t =9

Recently, a generalized n-dimensional B-tree
indexing scheme named BV-tree[7] has been
proposed. However, this scheme is not feasible
because its structure and algorithms are not
specified. Our indexing scheme proposed in this
paper is a rather feasible indexing scheme of
BV-tree in the sense that its detail structure and
algorithms are properly defined.

The rest of this paper is organized as follows.
In Section 2, the data manipulation algorithms
for our index structure are presented; the com-
putational complexity and the I/O complexity are
also discussed. Furthermore, we generalize B-tree
index structure to get our index structure. This
generalization means that our index structure
easily extend existing B-tree index structure for
advanced database applications using multi-
attribute records. In Section 3, we also measure
the performance of spatial join operations with
multi-attribute access methods by benchmark
testing developed storage manager. Finally, in
Section 4, we conclude this paper with comments
on limitations of our indexing scheme and future

researches.

2. A Multi-attribute Indexing
Scheme

The hyper-region set will be used as muiti-
attribute index over multi-dimensional space. The
hyper-region set will be used as multi-attribute
index over multi-dimensional space. The hyper-
regions in hyper-region set can be sorted by
increasingly or decreasingly. Then this sorted set
is just an index for multi-attribute. Even though
the set is sorted, the size of the set might be too

273

large to fit in primary memory. Thus the sorted
set should be stored in a secondary storage
device like a disk. One way of storing the set to
a disk device is to store sequentially along to the
order of the hyper-region. However, this is not a
good approach to index the points in multi-
dimensional space because sequential read and
write operations are required for searching and
updating index entries.
Another approach is to wuse
mechanism to index the points in multi-
dimensional space. This might be a good
approach if hash addresses would be evenly
distributed over the disk address space. The most

of index scanning requires one disk access but

a hashing

rarely two or more disk accesses are required in
case the hash addresses are duplicated severely.
Besides that, the range search is not feasible
because the index itself cannot be ordered.

The best approach to index points on mudti-
dimensional space certainly might be to use a
tree structure because of its fast and efficient
database operations. As an evidence, the B-tree
and its variations have been used as indexing
methods through most database management

systems. B-tree is a balanced multi-way search

tree whose structure provides several different
access paths according to a given key attribute.
B-tree also provides the same length for all
search paths. SJ(Spatial Join) tree has hierarchical
structure like B-tree. Each entry of a node except
for leaf node has a hyperregion S tree is a
new multi-attribute indexing scheme having a
B-tree-like structure.

2.1. Basic algorithms and computational
complexity

The basic algorithms of §] tree, include binary
region
algorithm. They are essential algorithms for
maintaining each index node of § tree
efficiently. The binary search algorithm makes a
role to search a specific point within a node. In
the region split algorithm, the policy to split leaf

search, split, and a region merger

and internal node is applied. This policy is very
important for node balancing because the node
occupation rate is determined by this policy. The
region merge algorithm is opposed to region
split algorithm. This algorithm determines how to
merge less occupied nodes under the given

value.

Multi-attribute binary searching

Binary search is a primary algorithm in com-
puter software area. Traditionally, binary search
algorithm is based on a single-dimensional data
set. However, multi-dimensional binary search is
needed to support multi-attribute data sets. In
this section, we describe our binary search
algorithm for multi-attribute data sets and we
analyze its computation complexity. Our binary
search algorithm is like that of single-dimensional
binary search. The algorithm is described in
Pascal-like pseudo code for simple description.
We assume that node is a set of hyper-regions
and the number of node entries is m.

Algorithm MABS(Hr : set of hyper-regions,
x:a hyper-region)
Begin
{Let m be the number of element of gjven
hyper-region set.}
b =1, Ub = m, Mid = (Lb+Ub)/2;
while not equal to Hr[Mid] and x and

ok
0F
5]

274

Lb<Ub do

if Hr{Mid] <, x

then [b = Mid+1;

else Ub = Mid-1;

end if
end do
if Lb < Ub return(failure) end if
return(Mid)

End

Binary search based on a single-dimensional
data set has O(log; k) computational complexity
where k is the number of elements in the data
set. In case of multi-attribute data sets like this
algorithm, a comparison for equality of two
hyper-regions requires loops for an
n-dimensional data set. Therefore, the total
computational complexity of this search algorithm
is O(log, mn). Almost of 7 is much smaller than

m.

m

Region splitting

The split algorithm is like that of B-tree except
that the split policy is based on multi-
dimensional attributes.

Algorithm RESP (Hr: set of hyper-region)
Begin
Node Left, Right;
{Let Ieft and Right be nodes to have set of
hyper-regions.}
select a hyper-region R, which divides Hr half
While remaining hyper-regions in Hr do
take a hyper-region 7, from Hr;
if r <, R
then insert r into Left
else insert r into Right;

CHS-254 Ajel 7lge olgst

end if
end
return(Left, Right);
End

In the above splitting algorithm, Node is a
data structure for storing a set of hyper-regions
compc‘)sed of an index node. the while loop ends
at no more hyper-region remaining in Hr. The
number of repeating of the while loop represents
the computational complexity of this algorithm.
Therefore, the computational complexity of the
split algorithm is O(m) where m is the number
of hyper-regions in Hr.

Region merging

The split algorithm is alike that of B-tree
except that the node entry is hyper-region. Two
halfway empty nodes are merged into one full

node.

Algorithm REMG(Left, Right:set of hyper-
regions)

Begin

Node Hr;

{Let Hr be a node to have result set of
hyper-region.}

while remaining hyperregions in Left and
Right do
take a hyper-region r, from Left of Right;
insert r into Hr;
end
return(Hr);
End

In Algorithm Split, Node is a data structure

275

for storing a set of hyper-regions composed of
an index node. The while loop ends at no more
hyper-region remaining in the Left and Right
nodes. The number of repeats of the while loops
represents the computational complexity of this
algorithm. Therefore, the computational comple-
xity of the merge algorithm is O() where m is
the number of hyper-regions in Left and Right.

2.2. Data manipulation algorithms and 1/0
complexity

The data manipulation operations for index
management contain re&ieval, insert, and delete
algorithms. For these algorithms of S free, every
variable is italicized. Especially, the input variable
of each algorithm is boldfaced. For instances, in
retrieval algorithm, roof and K in an input
italicized and boldfaced
symbol, respectively. The algorithm is composed
of the following four components: heading of
algorithm, input specification, output specification,
and detail method. The heading part describes
the function of algorithm and its parameters. In
the specificaion ~ part, given input
parameter is described in detail. In the output
specification part, the result from algorithm is
described. Finally, the method part describes the
logical flow of algorithm in step by step.

variable appear as

input

Retrieval

The retrieval algorithm of SJ tree is like that
of B-tree except for the way of searching in leaf
node. The following retrieval algorithm internally
uses the binary search algorithm shown in the
previous section. In step MS], the binary search
is performed. This algorithm is recursive form
(refer to step MS3).

Algorithm Multi-Attribute Search
(Input : root, K; Output : tuples)
Input: A root of multi-attribute index tree, root
Given multi-attribute list (query)
K=(KK
Let (K K .o, , Ku) be Ry(K)
Output : tuples that satisfy input query, tuples
Method :

MS1. [Search root node]
Read the root node from disk. If root is
leaf then perform binary search with
Rq(K) within this node. Call the Binary
Search algorithm with argument root and
Ru(K). If the binary search is successful
then return results.

MsS2. [Search internal node]
If root is internal node then search last
location in the node where R.(K) is
strictly-less-than hyper-region in the
location. Let the location be i.

MS3. [Search child]

Search the ith child node with the same
search algorithm Call Multi- Attribute
Search recursively with chid node.

End of Algorithm

The I/O complexity of this algorithm is Oflog
N) where N is the total number of index nodes
and average k-way path exists. The step MS1 is
input routine in which one node structure is
read from disk. This routine is called logx N
times recursively from step MS3.

Insertion

The insert algorithm of SJ tree is like that of
B-tree except that the node entry is not a single
value but a hyper-region. The insert algorithm

276

internally uses the region split algorithm shown
in the previous section. In step IN3, the region
split is performed. This algorithm is in recursive
form(refer to step IN3).

Algorithm Multi-Attribute Insert(Input : root, K)
Input: A root of S] tree, root
Given multi-attribute list K = (K K
Let (K K , Ki) be Ry(K)
Output : Node, the index structure is modified.
Method :
IN1. [Search insert location in leaf node]
Search insertion location of leaf node using
the Multi-Attribute Search algorithm. Let the
location be R R is a set of regions in node
structure.
. [Insert into leaf node]
Insert R, (K) into R. As a result from
insertion, if the node is overflown then g0
to step IN3. Otherwise, overwrite the node
R to the disk. Terminate insert algorithm.
[Split node]
Split leaf node R into RI and R2 using
Split algorithm. Now, R1 and R2 are newly
created and the R's entries are inserted.
Write the node RI and R2. Imsert the disk

IN3.

location of R1 and R2 into the parent node
of R by calling recursively the Multi-
Attribute Insert algorithm.

End of Algorithm

Like the retrieval algorithm, the [/O
complexity of this algorithm is O(logx N) where
N is the total number of index nodes and
average k-way path exsts. The step IN1 is the
search routine in which the leaf node location is
searched from the index structure. This routine

oHE-5d Mol J1Yg ol8Et

calls the Multi-Attribute Search algorithm shown
the previous section. The searching is
performed in Oflogk N) and the splitting is also

in

done in O(logk N) because the maximum search
path is logx N.

Deletion

The delete algorithm of SJ free is like that of
B-tree except that the node entry is not a single
value but a hyperregion. The delete algorithm
internally uses the region merge algorithm shown
in the previous section. In step DL3, the region
algorithm is in
recursive form(refer to step DL3).

merge is performed. This

Algorithm Multi-Attribute Delete(Input: root, K)
Input : A root of SJ tree, root
Given multi-attribute list K = (K, K
Let (K K ... , K) be Ry(K)
Output : None, the index structure is modified.
Method :

DL1. [Search delete locaton in leaf node]
Search deletion location of leaf node
using the Multi-Attribute ~ Search
algorithm. Let the location be R R is a
set of regions in node structure.

DL2. [Delete from leaf node]

Delete R (K) form R. As a result from
deletion, if the node is underflown then
go to step DL3. Otherwise, overwrite the
node R to the disk Terminate delete
algorithm.

DL3. [Merge node]

Merge node R and adjacent node R’ into
the node R using the Merge algorithm
shown in previous section if merge is

possible. Overwrite the node R to the

277

disk. Delete from the location R in the
parent node of R by calling recursively
the Multi-Attribute Delete algorithm.

End of Algorithm

Like the retrieval algorithm, the I/O
complexity of this algorithm is O(logx N) where
N is the total number of index nodes and
average k-way path exists. The step DL1 is the
search routine in which the leaf node location is
searched from the index structure. This routine
calls the Multi-Attribute Search algorithm shown
searching
performed in Oflogx N) and the merging is also
done in Oflogx N) because the maximum search

in the previous section. The is

path is logx N.

Spatial join

The spatial join algorithm of S tree is like
equijoin of B-tree except that the number of key
fields engaged in join is two or more. Spatial
join between two sets of spatial points is defined
as intersecion points in commonly overlapped
regions. Spatial join needs the most time-
consuming I/O operatons among database
operations. In case of R-tree, most of the node
entries are traversed for checking if overlapping

between two sets of spatial points exists.

Algorithm Spatial Join(Input : rootl, root2)

Input : A root of S] tree, rootl
Another root of 5] tree, root2

Qutput: A set of spatial points overlapped

between two indexed regions.

Method :

JN1. [Search overlapped entry between rootl,
root2]

For each entry in rootl, check if the entry
lies in the range of roof2. Let the result
entries be an ordered set R. The ordering
of entries in R is already determined in
the node.

JN2. [Search path down to leaf]
With frist entry in R, search path down
to leaf. Let the leaf node be Ly Then,
with last entry in R, search path down to
leaf. Let the leaf node be L.

JN3. [Traverse from Ly to L)

Traverse sequentially leaf node using
linked list from Ly to L,;. While traverse
each node, check if the entry is found in
another 5] tree. Return the result set.

End of Algorithm

Spatial join using the S tree indexing scheme
can be performed as speedily as shown in the
above algorithm. In the algorithm, the entries of
two nodes are checked if they are

overlapped. Because the order of entries in a

root

node was already determined at the starting
point of insertion, searching is done only for the
first and the last entry of overlapping set R.

The complexity of this spatial join algorithm is
influenced by the size of the overiapping area
between two] trees. From JNI1 to JN2 O(logk
N) I/O cost is needed where k-way search is
performed for N nodes. In the remaining routine
JN3, the I/O cost varies with the size of
overlapping area.

3. Benchmarking Spatial
Join Operations

ol
0E
re

278

The performance of a system can be measured
by the simulation and the benchmark tests, The
simulation is not a concrete implementation but
a realistic system that is nearly the same as
practical system is constructed. To evaluate the
system performance accurately, simulation testing
should be performed with a wide range of much
realistic data. After the

measurement is done by a simulation, the actual

test performance
system needs to be implemented and to be run
under the practical system environment. In spite
the simulation results good
performance, it might not be always guaranteed

of show

a
to run with best performance under the practical
circumstances since the simulation has assumed
virtual ones.

The benchmark test is performed with a
concrete implementation under the practical
system environment. A proposed system is first
implemented entirely, and then benchmark data
will be applied to the system. However, the
benchmark test might be slightly dangerous
because the performance of a new system never
has been measured. Besides that, the benchmark
data are required to reflect practical database
circumstances. The best choice for performance
measurement is to simulate with realistic data set
and then to do the benchmark test under the
practical database circumnstances,

To accomplish two-step performance measure-
ments such as simulation and benchmark, it
takes a lot of time till the evaluation is entirely
done. Thus one of two methods needs to be
selectedr to take less of time. If the good
performance of the system could be expected
somewhat, the benchmark test will be desirable.

Because we could expect reasonmable performance

I

CHE-%4 el

for our system as shown in the previous sections
we will select the benchmark test as a method of
performance measurement. However, concrete
implementation require- much of time. To take
less of time, we implement only a storage
manager using our index structure without
overall database management
system. Besides that, on the benchmark test sets

for measuring " the performance of our indexing

implementing

scheme, we use simple data and query file set.

3.1. Design of benchmark tests

While application-specific benchmarks measure
which database system is best for a particular
it could be very difficult to
understand them. General benchmarks should be

able to measure the performance of almost

application,

general-purpose database systems. Moreover, it is
necessary to understand them easily.

The benchmark database is designed so that
one can quickly understand the structure of the
relations and the distribution of each attribute
value. Consequently, the results of the bench-
mark queries are easy to understand, and
additional queries are simple to design. The
attributes of each relation are designed to
simplify the task of controlling selectivity factors
in selections and joins. It is also straightforward
to build to an index (primary or secondary) on
some of the attributes and to reorganize a
relation so that it is clustered with respect to an
index.

Benchmark data set should be designed to
reflect realistic application specific properties.
Especially, spatial database applications mainly
use multi-attribute data. This multi-attribute data

may be point data or range data. Since our view

279

point in this paper is point data, we assume that
multi-attribute point data
benchmark test have the following properties:

(1) A file has limited number of records

having two key-fields.

(2) Data type of each field of a record is

either integer or character string,

(3) Key-fields are arithmetically comparable

with each other.

(4) For spatial distribution, some database may

be clustered at a specific region.

©©) Data do not need to be ordered by

specific key fields.

(6) Multi-attribute indexing scheme is used to

enhance performance.

With these assumptions, we design a set of
the following data file having twokey field
records. Each key field has the ranged integer
type. Both first key and second key field are put
on the range [0,10000). This means that max-
imum 100 million(10% points or records could
exists in the data space. We limit the number of
other fields as just one due to simplicity. The
total length of a record is 255 bytes. The data
type of the remaining field is a simple character
string for simplifying the structure of a record.
The spatial distribution of data is defined by

clustering factor.

to be used in

The clustering factor is defined as the area of
a two-dimensional subspace. For clustering factor
n, 70% of the total spatial point data are
distributed in the range of 10"xS; where S is
the size of the total data space. The remaining
30% are evenly distributed in the range of the
total data space. The ratio 70% is a simple
experimental result value.

A 100,000-record file is a commonly-used size

in the practical application area. Occasionally,
one million(1,000,000) records file is used, but
this size makes it hard to benchmark test due to
time consuming. Besides, Wisconsin benchmark
uses the database with only 10,000 records. .

The join_ldat file has the finy number of
records overlapping with bench_l.dat file. The
"tiny" means that 1% of total number of records.
The join 2.dat file has the smull number of
records overlapping with bench 1.dat file, The
"small" means that 5% of total number of
records. The join 3.dat file has the medium
number of records overlapping with bench_1.dat
file. The "large" means that 20% of total number

160000
140000
120000
100000
80000
60000
40000
20000 ,

0

Number of read blocks

10 20

30

of records. The join 4dat file has the huge
number of records means that 40% of total
number of records. Fach join file also has 100,000
records in uniform distribution data

8.2. Performance of spatial join operations

The performance of S] #ree is measured for
spatial join operations. The spatial join operation
{join_1.dat,
join_2.dat, join_3.dat, join 4.dat and join_5.daf). We
performed the benchmark test in SunOS 551
running on a Sun sparc Ultra-1 computer. Spatial

is performed on five join files

join is an extension of equijoin in relational

database system. We measure the performance of

——R—tree
~®—B-—tree
—4—K—-D—B tree
—>3J tree

40

Range size(%)

Fig. 1. Number of read blocks on range size

10000

£ 50000
S

£ 40000
Q

< 2 30000
Nl

'c 5 20000
@

Q

E

3

Z

0
10

20
Range size(%)

30

—e—R—tree
—8—B-tree
—2—K~-D—B tree
== S5J tree

40

Fig. 2. Number of false match blocks on range size

280

CHE-4A

spatial join by 1/O cost that is the number of
read blocks(see Fig.1) and false match blocks(see
Fig.2) on range size.

The results of benchmark
of
overlapping size. Because the ordering of node in

show that the

performance Rtree is worst in any
the index dose not exist, R-tree should compare
all of node entries in two indexes. In addition to
that, overlapped regions in the nodes lead to
false match path. Other indexing schemes do not
allow overlapping regions in the node. Therefore,
they show relatively good performance. Among
these indexing schemes, 5] tree shows the best
performance because the ordering is fit to join
tables. B-tree and KDB-tree

performance because of the false match blocks.

show average

.4. Conclusions

The join operation is the principal method of
combining two relations. Conceptually a join is
followed by a
selection condition. In practice, this viewpoint
because
materializing the cross-product before applying

defined as a cross-product

can be very expensive, it involves
the selection criterion. This is especially true for
spatial databases.

In this paper, we proposed a new indexing
scheme for efficient spatial join operations, SJ
tree. Also, we described basic algorithms for
data.
algorithim, we analyzed computational complexity

manipulating multi-attribute For each
and I/O complexity. Moreover, we showed that
5] tree s a kind of generalized B-tree. This fact
means that 5] tree can be easily implemented on
in almost

existing built-in B-tree storage

managers.

M91 7142 ol T2k xol elatel A

281

olr

(=

As an experimental performance measurement,
we performed benchmark testing under various
realistic data and query sets. From the results of
benchmark test we concluded that §J tree mostly
outperformé other indexing schemes on spatial
join. Since spatial join is a large time-consuming
operation, the performance on this operation
influences to handle very large database.in wide -
range. 5 tree presented relatively good perfor-
mance compared to other indexing schemes
regardless of the size of overlapping area.

We conclude that 5] tree is a good indexing
scheme for efficient spatial join operations. If S
tree is fully implemented as an index method of
storage manager, the performance of many
applications using multi-attribute will be remar-
kably enhanced. In the further work, we will
extend the proposed method to handle spatial
range data as well as point data.

References

N. Beckmann, H. P. Kriegel, R Schneider, and B.
Seeger, The R*tree: An efficient and robust
access method for points and rectangles, In
Proc. ACM SIGMOD Conf.,, (1990) 322-331.

T. Brinkhoff and H P. Kriegel, The impact of
global clustering on spatial database systems,
In Proc. Very large Data Bases Conf, (1994)
168-179.

T. Brinkhoff, H. P. Kriegel, R. Schneider, and B.
Seeger, Muilti-step processing of spatial joins,
In. Proc. ACM SIGMOD Conf.,, (1994) 197-208.

T. Brinkhoff, H. P. Kriegel, and B. Seeger,
Efficient processing of spatial joins using
Retrees, In. Proc. ACM SIGMOD Conf, (1993)
237-246.

R. Elmasri and S. B. Navathe, Fundamentals of
Database Systems, Benjamin/Cummings, Red
wood City, CA, 2nd edition, (1994).

Faloutsos, T. Sellis, and N. Roussopoulos,

Analysis of object oriented spatial access

methods, In Proc. ACM SIGMOD Conf,

(1987) 426-439.

Freeston, A general soluton of the
n-dimensional B-tree problem, In Proc. ACM
SIGMOD Conf., (1995) 80-91.

O. Gunther, Efficient computation of spatial joins,
In Proc. IEEE Data Engineering Conf, (1993)
50-59.

A, Guttman R-trees: A dynamic index structure
for spatial searching, In Proc. ACM SIGMOD
Conf.,, (1984) 47-57.

K Hinrichs and]. Nievergelt, The Grid file: a
data structure designed to support proximity
queries on spatial objects, In Proc. WG'83(Intl.

" Workshop On Graphtheoretic Concepts in

282

Computer Science), (1983) 100-113.

E. G Hoel and H Samet, Data-parallel spatial
join algorithms, In Proc. Parallel Processing
Conf, (3) (1994) 227-234.

E. G Hoel and H Samet, Performance of data
parallel spatial operations, In Proc. Very Large
Data Bases Conf, (1994) 156-167.

M L Lo and C V. Ravishankar, Spatial joins

using seeded trees, In Proc. ACM SIGMOD

Conf,, (1994) 209-220.

C Nelson and H. Samet, A consistent

hierarchical representation for vector data,

Computer Graphics, 20 (4) (1986) 197-206.

D. Rotem, Spatial join indices, In Proc. IEEE Datg
Engineering, (1991) 500-509.

S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X.
Liv, and C T Lu Spatial Databases-
Accomplishments and Research Needs, IEEE
Trans. on Knowledge Engineering, 11 (1) (1999)
45-53.

