웨이블릿 변환을 이용한 가변블록 기반 영상 압축

The Variable Block-based Image Compression Technique using Wavelet Transform

  • 권세안 (삼성전자(주) 정회원) ;
  • 장우영 (연세대학교 전파공학과 정회원) ;
  • 송광훈 (연세대학교 전파공학과 정회원)
  • 발행 : 1999.07.01

초록

본 논문에서는 웨이브릿 변환을 이용한 새로운 가변블록 기반 영상압축방식을 제안하였다. 웨이브릿의 각 밴드별로 통계적 특성이 다르므로 각 부밴드에 적합한 양자화기에 적용하였으며, 각 부밴드의 방향특성을 이용하여 부밴드들을 서로 다른 크기의 가변블록으로 겹치지 않게 분해하였다. 또한 에너지의 특성을 고려하여 임계값 이하의 값들은 0으로 보내어 부호화하지 않음으로써 불필요한 비트의 할당을 줄인다. 시뮬레이션 결과 제안알고리즘은 기존의 블록 기반 압축알고리듬에 비해 압축률과 PSNR면에서 객관적으로 향상된 성능을 보였고, 주관적으로도 블록기반 방식임에도 불구하고 매우 낮은 BPP를 갖는 압축에서 나타나는 블록화 현상이 나타나지 않음을 확인하였다. 또한 0의 위치정보를 표현하는 방법에 있어 블록기반으로 접근하기 때문에 간단한 구조를 가지는 장점이 있다.

In this paper, an effective variable-block-based image compression technique using wavelet transform is proposed. Since the statistical property of each wavelet subband is different, we apply the adaptive quantization to each wavelet subband. In the proposed algorithm, each subband is divided into non-overlapping variable-sized blocks based on directional properties. In addition, we remove wavelet coefficients which are below a certain threshold value for coding efficiency. To compress the transformed data, the proposed algorithm quantizes the wavelet coefficients using scalar quantizer in LL subband and vector quantizers for other subbands to increase compression ratio. The proposed algorithm shows improvements in compression ratio as well as PSNR compared with the existing block-based compression algorithms. In addition, it does not cause any blocking artifacts in very low bit rates even though it is also a block-based method. The proposed algorithm also has advantage in computational complexity over the existing wavelet-based compression algorithms since it is a block-based algorithm.

키워드

참고문헌

  1. IEEE Trans. Signal Processing v.41 no.12 Embedded image coding using zerotress of wavelet coefficients J. M. Shapiro
  2. IEEE Trans. Acoustics, Speech and Signal Processing v.34 no.5 Subband coding of images J. W. Woods;S. O'Neil
  3. IEEE Trans. on Image Processing v.5 no.3 Wavelet-Based Coding Using Nonlinear Interpolative Vector Quantization X. Wang;E. Chan;M. K. Mandal;S. Panchanathan
  4. IEEE Trans. on Image Processing v.5 no.1 Image Compression Using Wavelet Transform and Multiresolution Decomposition A. Averbuch;D. Lazer;M. Israeli
  5. IEEE Trans. Signal Processing v.41 no.12 Regular Wavelets;A Discrete-time approach O. Rioul
  6. IEEE Trans. Acoustics, Speech and Signal Processing v.37 no.12 Multifrequency channel decompositions of images and wavelet models S. G. Mallat
  7. 1993 International Symposium on Circuits and Systems v.1 On the optimal transform for vector quantization of images M. A. Cay;W. Li;Y. Zhang
  8. IEEE Trans. Communication v.34 no.11 Classified vector quantization of images B. Ramamurthi;A. Gersho
  9. Proc. IRE A method for the construction of minimum redundancy codes D. A. Huffman
  10. Comm. ACM v.30 no.6 Arithmetic coding for data compression Ian H. Wittten;Radford M, Neal;John G. Cleary
  11. IEEE Trans. Circuits and Systems for Video Technology v.5 no.1 Block wavelet transform coding of images using classified vector quantization Y. Huh;J. J. Hwang;K. R. Rao
  12. 한국통신학회 논문지 v.24 no.4B 웨이블릿 변환을 이용한 블록 기반 영상 압축 기법 윤정필;손광훈;허영