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ABSTRACT

In designing the quantizer of a coding scheme using a training sequence (TS), the training algorithm tries to

find a quantizer that minimizes the distortion measured in the TS. In order to evaluate the trained quantizer or

compare the coding schemes, we can observe the minimized distortion. However, the minimized distortion is a

biased estimate of the minimal distortion for the input distribution. Hence, we could often overestimate a

quantizer or make a wrong comparison even if we use a validating sequence. In this paper, by compensating the

minimized distortion for the TS, a new estimate is proposed. Compensating term is a function of the training

ratio, the TS size to the codebook size. Several numerical results are also introduced for the proposed estimate.

I. Introduction

Quantization (or vector quantization} can effecti-
vely reduce the huge amount of data with
possibly small error, which is called quantizer
distortion, and is the basis for the lossy video

and audio compressionm

. In pattern recognition/
classification, including speech recognition, part of
the unsupervised learning and clustering step can
be regarded as vector quantization or the vector
quantizer(VQ) design problem[zl’m’[gl.

Since the codewords of the VQ codebook are
elements of the k-dimensional Euclidean space
R*, deriving an explicit relation between an op-
timal quantizer and the input distribution is very
difficult. Hence, explicitly designing a VQ code-
book is difficult even if the input distribution is
known. Clustering algorithms, however, can effect-
ively design a codebook using a training sequence
(TS) by minimizing the distortion measured in the
given TS. The underlying distribution of the TS
is equal to the input distribution. TS could be a
part of the video or the speech spectral vectors.
We call the distortion measured in the given TS
the training sequence distortion(TSD). The well
known clustering algorithms for designing VQ are
the K-means algorithm and the Kohonen learning

algorithm®?, Such inductive methods are based on
the empirical risk minimization(ERM) principle[ﬂ.
Abaya and Wise"” studied the consistency probl-
em of the sequence of the trained quantizers.
They have shown that, as the TS size increases,
the trained quantizers yield a distortion sequence
that converges to the minimal distortion for the
input distribution and that TSD also converges to
the minimal distortion. Hence, if using a large TS
is allowed, then the trained codebook for the TS
will produce a distortion that is very close to the
minimal distortion. However, training using a
large TS is very complex, and acquiring a large
TS is often difficult. When we develop a lossy
coding scheme based on quantization, if the
quantizer is designed using a TS, then we may

encounter with the following questions:

1. How to evaluate a trained codebook,
2. How to compare the coding schemes.

Since TSD is easy of access in training the
quantizer, TSD is usually employed to answer the
questions. However, the well known effect of TS
on TSD is that TSD decreases as the TS size
decreases and eventually goes to zero. In other
words, TSD is a biased estimate of the minimal
distortion for the input distribution and the bias
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increases as the TS size decreases (this fact will
be shown in this paper).

We now consider the problems caused by the
effect of TS size based on the questions. The
first question is concerned with evaluating the
optimality of a trained codebook by calculating
the distortion using the trained codebook for the
input distribution and comparing this distortion to
the minimal distortion for the input distribution.
The underlying distribution of the TS and the
input distribution may be chosen to be different
in order to evaluate the robustness of the trained
codebook; this problem is referred as the code-
book robustness or the quantizer mismatch probl-
em[21]. However, in this paper, we will confine
the problem to the case that the underlying distri-
bution of TS is equal to the input distribution.
Since the input distribution is usuvally unknown,
we should use the validating sequence(VS) to
calculate the distortion produced by the trained
codebook for the input distribution. It is assumed
that the underlying distribution of VS is equal to
the input distribution. Let the distortion measured
using the VS be denoted by VSD. Furthermore,
since we do not know the minimal distortion for
the input distribution, the biased TSD is employed
instead of the minimal distortion. Hence, the

following difference distortion
VSD— TSD ) 1

is usually employed to observe the optimality of
a trained codebook. However, since TSD is a
biased estimate, this difference distortion is much
greater than the real difference.

The second question is concerned with compar-
ing the minimal distortions that can be achieved
by each coding scheme for the same input distri-
bution. A simple way to compare the coding
schemes is comparing TSDs of each coding
scheme. If the TS size is large enough, then this
approach may be appropriate. However, since the
TSD is a biased estimate of the minimal distor-
tion for the input distribution, comparing TSDs
could lead a codebook designer to make an erro-
neous design decision. For example, even though

the minimal distortions of two coding schemes are
the same, their TSDs could be different depending
on certain conditions related with TS. A better
coding scheme may reduce the TSD. However,
decreasing the TS size could also reduce the
TSD. It follows that we often overestimate the
performance of a coding scheme. To avoid such a
mistake, it is general procedure to compare each
coding scheme’s VSD in a similar manner as in
the first case. However, in real applications, since
the input often has a time-varying statistics,
obtaining an appropriate VS is difficult. Hence, a
careless choice of VS could also yield a wrong
comparison.

In this paper, focusing on the mistakes that
could be caused by the bias of TSD, we try to
alleviate the bias of TSD. To do this, the TSD is
analyzed by proposing several upper bounds. An
estimate of the minimal distortion for the input
distribution is then proposed by compensating the
TSD. The bias due to the finite TS size will be
significantly compensated by this estimate. Hence,
when we evaluate a trained codebook or compare
the coding schemes, employing the new estimate
in place of TSD will reduce the effect caused by
using TS.

This paper is organized as follows. In Section
II, VQ and TSD are defined with mathematical
notations and the bias of the TSD will be
observed. In order to alleviate the bias, an
asymptotic bound for the TSD will be introduced
in Section IIIl. A new difference distortion using
the compensated estimate is followed in Section
IV. In Section V, numerical results on the new
estimate will be illustrated. Section VI concludes
this paper.

I. Theoretical Observation on TSD

In this section, the TSD will be defined and
theoretically observed. It will be shown that the
TSD is
distortion for the input distribution. Consider a

a biased estimate of the minimal

discrete-time,
X I XZ L

memoryless,  stationary

with source symbols that are inde-

source,
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pendent and identically distributed(i.i.d.) random
vectors taking values in R* Let F be defined as
the distribution function of the random vector
X Suppose  that EIXl1*¢,  where
Nxll: =V 2+ +2d for x=(x;, 29

Let C, denote the class of sets that have =#
points in R* and let the sets in C, be called
the #n-level codebooks, where each codebook has
n codewords. For a codebook C (=C,), a VQ
is then described as a map Q. defined as

Q: R —C

Q%) = argmin ;¢ lIx — ylI* )

Furthermore, the average distortion D(C,F)
resulting when the random vector X, is quantized

using codebook C, is given by
XC.F = [llx—Qx)I’dF(x). 3)

The quantity inf ccc IXC,F) is called the (»n
-level) F-optimal distortion, and a code C* that
yields the F-optimal distortion is called an (»
-level) F-optimal codebook (ie., IXC' F)=
inf cec, XC,F) if C" exists"®). Note that the
optimal codebook design problem is that of
finding an F-optimal codebook.

We define the TSD quantitatively as follows.
Let X{,---,X% be a given TS, where w is a
sample point in the underlying sample space &
and wm is the TS size. For a codebook
C (eC,), TSD, the quantizer distortion measured
in the TS, is defined as

TSD : = IXC.F2) = [lx—Qc(IPdFa(x), @)

where F¢ is the empirical distribution function
of the TS!'***®. Thys the TSD is a random
variable that is defined on the underlying sample
space and is a function of «. However, for
simplicity, we omit @ in this notation. The
number of possible ways in grouping the m
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points X{¢, ---, X% into the » (or less than »)
groups is »™, which is finite!, Hence, there
exists at least one codebook that minimizes the
TSD for a given F.. Let C%, which satisfies

X C%, Fy)=inf cec IXC,F3), &)

be called an
D(C%,F%) called the F,-optimal distortion

F.,-optimal -codebook and
27
Note that inf o IXC,Fa)=0 every o if B=1.
Through this paper, we assume that the codebook
in TSD is F,-optimal, ie, TSD=inf .,
IXC,F4) from the codebook design algorithms
that is based on the ERM principle. Otherwise
the codebook in TSD will be specified.

Now, we observe the bias of TSD. For any
fixed codebook B, it is clear from [25,
Appendix] that E{D(B,F,))=D(B,F). It follows
that

inf cec, E{IXC,F,)}=inf cec IXC, F). ©6)

Hence, if (' (eC, is an
codebook, then the TSD for (C* will be an
unbiased estimate of the F-optimal distortion,
since E{D(C',F)}=D(C',F). On the other

hand, from Appendix A,

F-optimal

Elinf ¢ec IXC,F\)} < inf cﬁc,mc,n(l-—}”). )
Hence for finite wm,
E{lIlf CEC,,D(C, Fm)} < ll'lf CEC"D(C,Ir), (8)

which implies that the F,-optimal distortion is
a biased estimate of the F-optimal distortion.
Since the TSD is equal to the F, -optimal

distortion from the assumption, the TSD is biased
obviously. Note that a similar result can also be
derived from a tighter bound derived in [26,
Proposition 1].

H. A Compensated TSD

In this section, in order to compensate for the
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bias of TSD, an asymptotic result on the F,
-optimal distortion is introduced for an absolutely
continuous F.

Let the training ratio 5 be defined as the ratio
of the TS size to the codebook size, i.e.,
8:= min Let p:= k/(k+2), 7 be the density
function of X,, and

Wil = [[reoa] ™. ©)

If ; is bounded, then, from [26,Theorem 2],
we have an asymptotic bound for the F,-optimal

distortion given by

Hmsup . 27 E{inf cac X C,F )}

sulfn,,[l——t—gﬁﬁl] (10)
<n i {1-1=5=),

for g (=2¢—&R)), where § is a constant and
(m,) is a sequence of » such that m,/n — 5

as n—x,
¢ o= [ [ oax], (an
&8 = [ [ e M ax] 1 (I,

and J, a constant only depending on the vector

4 For example, it is known that

dimension
J1=0.0833, J,/2=0.0801---, and J;/3=0.0785"
B8Table  IMI7T - gayeral bounds for J/k are
introduced in [12], [13], and [20]. It is clear from

[15] and [26] that
limsup ,oeo 2¥inf cec IXC, F) <TI0 (12)

However, it is conjectured that the
asymptotically optimal quantizer is a function of

7B I other words,
M oot 240 e XC, FY=TIf |l (13)

In (11), we assume that ffz"_l(x)dx<oo. Note

that the minimum of ¢—&(B), ie, l—e ? in
(10) is obtained when F is a uniform
distribution. For the uniform distribution case, the

upper bound is simple as shown in (10).

On the other hand, for the non-uniform distri-
bution case, explicitly deriving ¢ and &(f) are
difficult.

First, we observe the constant ¢. Since

ffp—uzfuzdx < (fpr—xdx) 2 (ffdx) 1/2, (14)

by the Schwarz inequality, |/fll,( and ¢=1.
Suppose that J is a non-singular xx7z matrix.
Define a random vector Z=JX. If X has a
density function fy, then Z has the density

function as

fA2) = f£x(J'2)/|det]l. (15)

Hence, ¢, for Z satisfies the following relation

& =1 (@del | 1 [ f3(2)dz)
=[ [ A 1GOldet)l ~**ax] / [ [ AP(0ldet]] #*iax]?

= {x.

(16)

Hence, ¢ is invariant under a linear transform-
ation of X,, e.g., independent of the variance of
the input distribution or the correlation inside the
vector X;. For the uniform distribution case,
¢t = ¢Y:= 1. For k=3, it is known from [26]
that the Gaussian distribution has

e=a = ()" a7
t=th = (kzkjll)k. (18)

Next, we consider &8). It is clear that
e ? < &p < ¢t from (11) and [26,Proposition
1]. For the uniform distribution, &(R)=e *.
However, calculating &(8) for an arbitrary ; is
difficult. Hence, an approximation on £(g) is
introduced as follows. Since

pr—l(x)e/‘_F(X)llfw—’O, a.e., as /3_) o, (19)
and pr—le =W 1E8 < fZP—I(X), where fpr*l
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(x)dx<%, limy.&B) =0 by Lebesgue’s domin-
ated convergence theorem™”''”. In other words,
LB/ converges to zero at a rate faster than
gL It follows that [¢—&(B1/8 ~ ¢/ for
relatively large 4. For example, when the input
has a uniform distribution, if pB=5, then
B7'=0.2, which is approximately equal to
(1—e /8 = 0.198+~. Conclusively, for relati-
vely large 5, we can obtain an approximate rela-

tion as follows.

HmSup , 2 V*Elinf ce o IXC,F )} < Jillf ||,,(1 —lﬂ).

(20)

In Fig. 1, several examples of the term (1—¢/8)
in (20) are depicted. We can see the effect of the
input distribution on the codebook training, A
uniform distribution may require the smallest TS
size, and a larger vector dimension % may requ-
ire a less TS size for the Gaussian and Laplacian
distribution in training a codebook, since
gV es, for £=3,4,--. We should notice that
maintaining a high training ratio 4 is important
for good codebook. Moreover, increasing the VQ
codebook size without increasing TS does not
guarantee the expected improvement, since the
training performance is degenerated if we decrease
the training ratio. Furthermore, a usual mistake is
overestimating the performance of the trained
quantizer by observing the TSD.

1
0.9

0.8
0.7 /

Unifg rm

?os’ / R
o o5 [/l / | Laplacian
= 0:4’ ,/// / k=
rl; 0.31%——6 ussian

0.2 141 %

TNk
%1 Tk=16
0

0 5 10 15 20 25 30
Training Ratio

Fig 1. Example of (20).
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Now, by compensating the bias in TSD based
on (20), a new estimate is proposed as

TSD' : = T8D/(1-5). @
This estimate can substitute for TSD in
evaluating the trained codebooks or comparing the
coding schemes. Instead of TSD, for relatively
large B (>¢). Using this compensated estimate
TSD’, we may alleviate the problem that
overestimating the performance of the trained
codebook due to the TS size. If the input
distribution is unknown, we can simply set ¢=1
in (21).

V. A New Difference Criterion for
Testing Codebooks

In this section, a new difference distortion is
proposed using the estimate TSD’ in (21).

In order to validate the optimality of a codebook
B (e(C,) for F, we should calculate IXB,F)
and compare it with the F-optimal distortion
inf ccc IXC,F). Let 4 denote the difference

distortion as
4:= DB, F)—inf e D(C, P, (22)

Note that 4>(0. If this difference distortion is
small enough, then the codebook can be regarded
as a good codebook for F. However, since the
F-optimal distortion is usually unknown, the TSD
is employed instead of the F-optimal distortion
2 1 a VS is available, then using the VS and
the trained codebook, we can estimate the differ-
ence distortion 4 in (22). First, we consider the
traditional difference distortion VSD— TSD.

Consider a sequence of ii.d. random vectors
"X,. X;,-. Suppose that X, has the same

distribution function as X, has. In a similar
manner in (4), let X—l‘"-X—E' be a given VS,
where o'e and “m is the VS size. For an F
-optimal codebook (%, VSD is defined as
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VSD : = D(CY%. F%), (23)

where F< is the empirical distribution func-
tion of the VS. In general, the following differ-
ence distortion

4, := VSD— TSD (24)

is employed for validating a trained codebook
instead of 4, since the F-optimal distortion is
usually unknown, and

E{A) = E{D( Cx, FTn}— inf CEC”D(C, F)
<E(DCx, F3)}— Elinf cec X C,F0}  (25)
= E{4,},

where C% is an F,-optimal codebook. Note
that, from the Strong Law of Large Numbers™,
IXB,F,) > IXB,F) almost surely (as.), as
m — oo, for any codebook B. Therefore, the
TSD and VSD converge to the same quantity
DB, F) as. if (C“ is replaced by a fixed
codebook B. In other words, the difference 4,
goes to zero independently of the optimality of B
as m gets large; 4, is meaningless in this case.
However, since C% is F,-optimal from [19,
Theorem 1], there exists a sequence of codebooks
such that (IXC% F)) and (IXC%, F%)) converge
to the F-optimal distortion inf ccc IXC,F). 4,
also approaches zero as m gets large under
several assumptions. Therefore, 4, is traditionally
employed for codebook validation especially in
algorithms based on the ERM principle.

Now, we make several approximations based on
the asymptotic results in Section III. From (13),
we can obtain an approximation inf ccc IXC,F)
~n Y*7JiIf l,. Therefore, 4 can then have an

approximate relation:

E{4y = E{VSD'—n‘Z/k]k”fH,;} (26)
_ _TSD
< B{VsD- 11975,

for relatively large 4, where pg>¢. Let 4

denote the new difference distortion given by

45 = VSD— TSD'. 27

Since 43<4, (=VSD—TSD), 45 is tighter
than the widely used difference distortion J4,.
Note that ¢ is dependent on the input distribution
as shown in (11).

It is convenient to consider the signal to noise
ratios (SNRs) of the TSD and VSD. Let TSD
and VSD denote the SNRs of the TSD and
VSD, respectively, where

“TSD : = —101og('TSD/ o),

VSD:= —10log(VSD/ &), and & is the
signal varance. In VQ, & is defined as
& 1= (detS)", where S is the auto-covariance
matrix of X,P47MH

The traditional 4,= VSD- TSD can then be
changed to the difference SNR "4, defined by

4, := TSD- VSD (dB). (28)

Note that ~4° is independent of the signal
variance. In a similar manner to (26), we can
obtain a relation for

= 10logD(C”, F)—logl inf ccc D(C, ]  (29)

as

E(4} =E{(»"*"JIf1l,— VSD} (30)
<E(4)) +10loe(1— ¢/B).

for ¢/B<1. Hence, ‘Zl;':, the difference SNR, is

defined as

¢

Ay = A+ 10leg(1—&/B), (dB) (31)

where 10log(l — ¢/B8) is the compensation term

for the biased estimate TSD.

V. Numerical Results

For the numerical simulation, synthetic inputs
that represent the uniform distribution and the
Gaussian distribution were used.

Note that TSD is a random quantity but, the
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randomness is reduced as the codebook size
increases for arbitrary fixed 5. Under several
conditions, we can prove that a sequence of the
upper bounds for inf ccc D(C,F )% conver-

ges to its expectation in mean square as p—>co
24 Thus, there exists a subsequence that conver-
ges as. “P7 In fact, n=24,8, specifies an
example of such a subsequence and the expect-
ation can be the bound in (10). Hence, from (20),

we have the approximation

—2 _t
TSD<n ”],,Ilfllp(l /3), (32)

depending on the sample point weQ, for large
n and 4. This fact is demonstrated in Fig. 2,
where the TSD curves for three different TSs
overlap. Fig. 2 shows that each of the TSD curve
from the different TS are very similar. This
implies that we can expect similar TSD curves
even if TS is changed, i.e., the sample point is
changed.

0.7+
0.6 #J.,_*r: =it
R aad

0.5 rr"'
§o41—F
T ]
2 1 {
17
a 0.3 l_

o o
- N
s O

0 5 10 15 20 25 30
Training Ratio

Fig 2. TSD curves for three different TSs
(k=16, n=64, and a Gaussian iid. with
unit variance).

The first simulation was performed to observe
the tightness of the bound in (10) for various
types of inputs. Consider a uniform density
function f,(x), which is defined asf(x):=

a~* ifxe x*_,[0,4a] and O, otherwise, where g
is a positive constant. For this uniform distri-
bution or its linearly transformed distributions, the
bound can be rewritten as
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TSD < n~2*7,(12 7:2)(1—4—‘5‘;_5). (33)
Fig. 3 is an example of the uniform iid. input
case, where £=3, n=512, and the signal vari-
ance o'=1. We can see that the training ratio
4 dominates the TSD curve, and the bound curve
is very close to the TSD curve. However, for
B=15, the TSD values are greater than the
corresponding bounds. This is probably due to the
assumption that TSD= min ccc IXC,F2) in the
codebook design algorithm. In this case, it seems
that the trained codebook is close to optimal,
since the TSD is very close to» 2%, (12 &°)
(=0.0442). However, the codebook training
algorithms often get stuck in a local minimum.
For illustration, the VSD for the trained codebook
at B=30 is 0.0513; yet there is a gap between
VSD and TSD. Similar simulations were also
conducted using Gaussian ii.d. inputs. In this
case, the upper bound is given by

N
TSD < n—2/k]k[2”p—(k+2)/2 —02](1 _%) (34)

00T 0.01473 [

0.014 ’%
: el

0.012 e~
001 / Upper Bound

rtion

it

Empirical

2 0.006 ]

% 0,008 / <
1
!

0.004

0.002

0 5 10 15 20 25 30
Training Ratio

Fig 3. The upper bound in (33) and empirical result
versus the training ratio (k=3, n=512, uniform
iid. input without correlation inside the
vector).

from (31) for relatively large g>¢y. Fig. 4 was

obtained for a Gaussian iid. input with &=1
and 4£=3. In this simulation, at g=5120, the
TSD is 0.081 and is approximately equal to the
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VSD. In Figs. 3 and 4, there is no correlation

within the random vector X,. However, further
simulation was conducted for a correlated input

inside the input vector. Fig. 5 was obtained for a

Gauss-Markov input with £=3, where the
auto-covariance matrix is given by
1 0.9 0.81
s=[ 0.9 1 0.9], (35)
0.81 0.9 1
hence o =(detS)*=0.330---. This Gauss-Mar-

kov input is generated using a method based on

conditional distributions’". The constant ¢ s
independent of the variance of the input or the
correlation inside the vector®, Thus, Fig. 5 has
the same ¢=¢Y that of Fig. 4.

Fig. 6 shows a numerical example of TSD’,
the compensated TSD in (21).
k=16,n=064, the input has a Gaussian distribu-
tion, and TSD" is obtained from the TSD when
B=5120. A Dbias between TSD’ and TSD*
remains as is shown in Fig. 5. However, the

In this case,

influence of the training ratio 5 on TSD' is
reduced significantly.

In Fig. 7, the new difference distortion 4§ is
compared with 4,. Fig. 6(a) shows the VSD and
TSD curves for a Gaussian iid. input when
k=16 (¢§=1.134-). As 4 increases, VSD and
TSD converge to a distortion. Note that when
8=5120, TSD is 10.82 and VSD is 10.85. This
convergence behavior is more clear in Fig. 6(b)
when we observe J,. However, the proposed
difference distortion 4§ is a better bound than
4,. In the new difference distortion, the biased
(1-48.
Thus, A§ can ensure a more accurate estimation
of the trained codebook performance and the TS
size effect than 4, does. For the case of g=10

quantity TSD is compensated for by

in Fig. 7(b), 4, is 2.67, which is an upper
bound for 4. However, the proposed 4 is 1.57.

In this case, the compensated amount is 0.52~dB
from the difference SNR in (30). In Fig. 8, a
similar simulation is performed for the £=4 case

(¢¥=1.777--). In this case the compensated SNR

is 0.85 dB. If we do not know the type of the
input distribution, then we can simply use

09T 70.02765
0.025 —
L ey
007 / Upper Bound
g 0.015 [/ \\ ﬁ
a / Empirical
0.01 /,
0.005 -
0

0 5 10 15 20 25 30
Training Ratio

Fig 4. The upper bound and empirical result versus
the training ratio (k=3, n=512, Gaussian i.id.
input without correlation inside the input
vector).

4b=VSD— (1—35;?:17 , (36)

since Ai<A}< 4.

VI. Conclusion

In this paper, the bias in TSD is analyzed and
asymptotic bounds for TSD are observed. A
compensated estimate

TSD/(I - —%) 37

is proposed. This estimate can significantly
alleviate the bias of the TSD and is convenient
especially when a VS is unavailable. Furthermore,
a new and simple difference  distortion,
VSD— TSD/(1—¢/8), is proposed for the valida-
tion of the trained codebook when VS is avail-
able. As a result, we can avoid a wrong estimate
due to the biased TSD which is used in the
traditional difference distortion VSD — TSD without
any compensation. The constant ¢ depends on the
input distribution. However, we can simply set

¢=1 for unknown input distributions.
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Appendix A
°9105.609139
0.009
/»-———-_
0.008 — R
0.007 = =
c 0.006 1
2 o5 /1 Upper Bound
g 1\
0 0.004 ~
0,003 // Empirjcal
0.002
0.001
0

0 5 10 15 20 25 30
Training Ratio

Fig 5. The upper bound and empirical results versus
the training ratio (k=3, n=512, Gauss-Markov
with correlation coefficient = 0.9 inside the
input vector).

Consider a codebook B={y, -,yv,}eC, and

the corresponding Voronoi partition {S,}/_,. Then
D(B, F), the quantizer distortion for B, can be

rewritten as

D(B, F)= 3 [ lIx—vi*aF(x), (AD)

for a distribution function F. If we consider a

vector W¢ that is defined as

W=

NXY, (A2)

if m?+0, and W¢=(0,-,0), otherwise, where
mi = S‘I&(X‘,”), for each S,, then it is clear

that

inf cec. D(C.F3)
—inf cec, oy Symin ec IX7 =9l (A3)

<L 3 BT (XDIXE - WiE,

whete  Fi(x) i= m 7l Rl cw 1X7— WP
and —oo :=(—o0,--, —0), From (A2), the last

term in (A3) can be expanded as follows.
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L 3 R I(XDIX - W
= A S XD - v )+ (v, - WOIP

= o RS XDIX =y

— e B W i

(A9)

In (A4), if m¥+0, then

mAIWe =yl = (XD(XE -yl
(A5)
e Ty T
ml
T Yspr TsD"
0.7 4
06 SR

z / TSD
oal
0.1
0

0 5 10 15 20 25 30
Training Ratio

Fig 6. An example of compensated TSD (TSD’:
compensated TSD and TSD*: TSD at the
training ratio 5120).

where

af 1= Us(XIs(XXP—yNX§—y)+
et 20 g (X M s AKX =y U X — v,
(A6)
and  m¢IW¢—yjl’=0 otherwise. Hence, by
changing m{ to m in the last term of (AS5) and

from (A4), we obtain a relation

LS L XDIXr =yl =L Bmawe— v
<L B rxpixg- vt
[ & B xoixe - vit+ 1 Eatl.

(A7)
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Note that E{ gai}zo, where the equality holds

when y,-=fsxdF(x)/LdF,and

Bk B xoixs-vi=nE.p. A9

Therefore, from (A3), (A4), and (A7), we ob-
tain (7).
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Fig 7. TSD, VSD, and the proposed difference
distortion versus the training ratio
(Gaussian iid. with unit variance,
k=16, and n=64). (a) TSD and VSD.
(b) A1 = VSD-TSD and A2 = TSD/(1 -
1.134/p).
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