숫자의 형태 이해와 분할된 FSOM을 이용한 필기 숫자 인식에 관한 연구

A Study On Handwritten Numeral Recognition Using Numeral Shape Grasp and Divided FSOM

  • 서석배 (동아대학교 전기전자컴퓨터공학부 정회원) ;
  • 김대진 (포항공과대학교 컴퓨터공학과 정회원) ;
  • 강대성 (동아대학교 전기전자컴퓨터공학부 정회원)
  • 발행 : 1999.08.01

초록

본 논문에서는 필기숫자의 형태와 FSOM을 이용한 새로운 필기숫자 인식 알고리즘을 제안한다. 제안한 알고리즘은 비슷한 형태를 가지는 숫자는 같은 그룹으로 분류된다는 사실에 기초한 알고리즘으로, 필기숫자의 외접선에 의한 형태결정과 템플레이트 매칭을 이용하여 필기숫자 데이터를 여러 개의 그룹으로 분할하고 분할된 각 그룹별로 인식 알고리즘을 적용한다. 본 실험에서는 필기숫자의 데이터를 16개의 그룹으로 분류하였으며, 분류된 그룹별로 각각의 특징추출과 SOM의 단점을 보완한 FSOM을 적용하였다. 분할된 16개의 FSOM은 각 그룹별로 독립적인 학습이 가능한 특징뿐만 아니라 한 그룹씩 단계적으로 학습을 할 수 있는 장점이 있다. 제안한 알고리즘의 성능을 입증하기 위해서 Concordia 대학의 필기 숫자 데이터를 사용하여 실험하였다.

This paper proposes a new handwritten numeral recognition method using numeral shape grasps and FSOM (Fuzzy Self-Organizing Map). The proposed algorithm is based on the idea that numeral input data with similar shapes are classified into the same class. Shapes of numeral data are created using lines of external-contact and the class of numeral data is determined by template matching of the shapes. Each class of numeral data has FSOM and feature extraction method, respectively. In this paper, we divide the numeral database into the 16 classes. The divided FSOM model allows not only an independent learning phase of SOM but also step-by-step learning. Experiments using Concordia University handwritten numeral database proved that the proposed algorithm is effective to improve recognition accuracy.

키워드

참고문헌

  1. Proceedings of ICPR'96 Recognition of Handwritten Numerals Using Gabor Features Yoshihiko Hamamoto;Shunji Uchimura;Masanori Watanabe;Tetsuya Yasuda;Shingo Tomita
  2. Patten Recognition v.3 no.1 Recognition of Handwritten Numeral Base on Contour Information Dahai Cheng;Hong Yan
  3. Proceedings of ICNN'97 v.4 Recognition of Handwritten Digits Using Structural Information Sven Behnke;Marcus Pfister
  4. Pattern Recognition v.31 no.5 A Three-dimensional Neural Network Model for Unconstrained Handwritten Numeral Recognition N. V. Subba Reddy;P. Nagabhushan
  5. Pattern Recognition v.28 no.1 Handwritten Numeral Recognition Using Self-Organizing Maps Fuzzy Rules Zheru Chi;Jing Wu;Hong Yan
  6. Proceedings of ICPR'96 Recognition of Unconstrained handwritten Numerals by Self-Organizing Neural Network Sung-Bae Cho
  7. IEEE Transaction on Pattern Analysis and Machine Intelligence v.17 no.1 A Methode Combining Multiple Experts for the Recognition of unconstrained Handwritten Numerals Y. H. Huang;C, Y.;Suen
  8. IEEE Transaction on Systems, Man and Cybernetics v.SMC-22 no.3 Method of Combining Multiple Classifiers and Their Application to Handwritten Numeral Recognition L. Xu;A. Krzyzak;C. Y. Suen
  9. Pattern Recognition Letters v.14 no.4 Building a New Generation of Handwriting Recognition Systems T. K. Suen;R. Legault;C. Nadal;M. Cheriet;L. Lam
  10. Probabilistic Reasoning in Intelligent System: Network of Plausible Inference J. Pearl
  11. Journal of Applied Statistics v.18 no.1 A Study on the Use of Belief Functions for Medical Expert Systems M. D. McLeish;P. Yao;T. Stirtzinger
  12. Neural Fuzzy Systems Chin-Teng Lin;C. S. George Lee
  13. Digital Image Processing R. C. Gonzalez;R. E. Woods
  14. Image processing theory, algorithms, and architectures Maher A, Sid- Ahmed
  15. Computer Vision and Shape Recognition Contour for the Digitized Patterns R. Legault;C. Y. Suen
  16. In Proc. 1st Int. Workshop on Frontiers in Handwriting Recognition Unconstrained Handwritten Character Classification using Modified Backpropagation Model A. Krzyzak;W. Dai;C. Y. Suen
  17. Proceeding of the IEEE v.80 no.7 Computer Recognition of Unconstrained Handwritten Numerals C. Y. Suen;C. Nadal;R. Legault;T.A.Mai;L. Lam
  18. IEEE Trans. on Systems, Man and Cybernetics v.20 no.4 A General Knowledge-based System for the Recognition of Unconstrained Handwritten Numerals T. Mai;C. Y. Suen