참고문헌
- Parallel Distributed Processing D. E. Rumelhart;J. L. McClelland
- Neural Networks v.78 Improving the convergence of the back-propagaion algorithm A. Van Ooyen;B. Nienhuis
- Proc. IJCNN v.I Stepsize variation methods for accelerating the backpropation algorithm J. R. Chen;P. Mars
- Proc. ICONIP'94 Improving the Error Back-Propagation Youngjik Lee;Sang-Hoon Oh
- Neural Networks for Patern Recognition C. M. Bishop
- Neural Networks v.2 Multilayer feedforward networks are universal approximators K. Hornik;M. Stinchcombe;H. White
- IEEE Spectrum Working with Neural Networks Dan Hammerstrom
- Neural Information Processig System2 The cascade correlation learning architecture S. E. Fahlman;C. Lebiere
- IEEE International Conference on Systems, Man and Cybernetics A multi-layer feed-forward neural network with dynamically adjustable structures Lee T.-C;A. M. Peterson;J. C. Tsai
- IEEE Trans, Neural Networks v.4 no.5 Pruning Algorithms - A Survey R. Reed
- IEEE Trans. Neural Networks v.1 no.2 A simple procedure for pruning back-propagation trained neural networks E. D. Karnin
- Proc. of NIPS'89 Optimal Brain Damage Yann Le Cun;Jhon S. Denker;Sara A. Solla
- Proc. IJCNN'90 v.1 Novel back propagation algorithm for reduction of hidden units and acceleration of convergence using artificial selection M. hagiwara
- Proc. Int. Joint Conf. Neural Networks v.I Improving generalization in back-propagation networks with distributed bottlenecks J. K. Kruschke
- Advances in Neural Information Processing(1) A back-propagation algorithm with optimal use of hidden units Y. Chauvin
- Advances in Neural Information Processing(I) Skeletonization: A technique for trmming the fat from a network via relevance assessment M. C. Mozer;P. Smolensky
- IEEE Trans. Pattern and Machine Intell. v.16 A database for handwritten text recognition research J. J. Hull
- IEEE Trans. Neural Networks v.4 no.1 Backpropagation Neural Nets with One ad Two Hidden Layers J. Villiers;E. Barnard
- 전자공학회논문지 v.28 no.4 역전파 학습시 초기 가중치가 학습의 조기 포화에 미치는 영향 오상훈;이영직;김명원