Abstract
Color images are often corrupted by the noise due to noisy sensors or channel transmission errors. Some filters such as vector media and vector $\alpha$-trimmed mean filter have bee used for color noise removal. In this paper, We propose the fuzzy cluster filters based on the possibilistic c-means clustering, because the possibilistic c-means clustering can get robust memberships in noisy environments. Also, we propose weighted vector $\alpha$-trimmed mean filter to improve the conventional vector $\alpha$-trimmed mean filter. In this filter, the central data are more weighted than the outlying data. In this paper, we implemented the color noise generator to evaluate the performance of the proposed filters in the color noise environments. The NCD measure and visual measure by human observer are used for evaluation the performance of the proposed filters. In the experiment, proposed fuzzy cluster filters in the sense of NCD measure gave the best performance over conventional filters in the mixed noise. Simulation results showed that proposed weighted vector $\alpha$-trimmed mean filters better than the conventional vector $\alpha$-trimmed mean filter in any kinds of noise.
칼라 영상은 센서 잡음이나 채널 전송 에러에 의해 생기는 잡음에 의해 자주 오염되어진다. 이러한 칼라 잡음을 제거하기 위해 벡터 미디안, 벡터 $\alpha$-trimmed 평균 필터 등 여러 형태의 필터들이 개발되어져 왔다. 본 논문에서 제안된 클러스터 필터는 잡음에 오염된 환경 하에서 강건한 소속함수 값을 얻을 수 있는 가능적 c-mean 클러스터링 방법을 이용하였다. 또한, 본 논문에서는 혼합된 잡음에서 우수한 벡터 $\alpha$-trimmed 평균 필터를 개선하여, 원도우내의 화소중 중심에 위치한 화소에는 더 가중치를 부여하여 가중화 된 평균 필터링을 수행하는 가중화 벡터$\alpha$-trimmed 평균 필터를 제안하였다. 본 논문에서는 칼라 잡음이 발생한 영상에서 제안된 필터들의 성능을 평가하기 위해 칼라 잡음 발생기를 구현하였으며, 실험 결과는 NCD 척도 및 관측자의 시각에 의해 평가되었다. 실험 결과 제안된 퍼지 클러스터 필터는 NCD 관점에서 기존의 필터들에 비해 혼합된 잡음에서 우수한 성능을 보였고, 제안된 가중화된 벡터 $\alpha$-trimmed 평균 필터는 벡터 $\alpha$-trimmed 평균 필터에 비해 어떠한 잡음 하에서도 양호한 결과를 보였다.