초록
본 논문에서는, 움직임 예측과 신경 회로망을 이용한 고속 움직임 추려하여, 현재 블록의 움직임 벡터를 인적 블록들의 움직임 벡터들로 예측하정 알고리즘을 제안하였다. 움직임 벡터의 공간적 상관성이 높다는 점을 고였다. 학습 시간이 빠르고 2차원 적응적 특성의 KSFM(Kohonen self-organizing feature map) 신경망을 이용하여, 움직임 벡터의 코드북(codebook)을 설계하였다. 2차원 코드북상에서 서로 비슷한 코드벡터들(codevectors)은 가까이 위치하므로, 예측 코드벡터로부터 코드북상에서 점진적으로 움직임을 추정하였다. 모의 실험 결과, 제안한 방법이 적은 계산량으로도 우수한 성능을 나타냄을 확인하였다.
In this paper, we propose a fast motion estimation algorithm using motion prediction and neural network. Considering that the motion vectors have high spatial correlation, the motion vector of current block is predicted by those of neighboring blocks. The codebook of motion vector is designed by Kohonen self-organizing feature map(KSFM) learning algorithm which has a fast learning speed and 2-D adaptive chararteristics. Since the similar codevectors are closely located in the 2-D codebook the motion is progressively estimated from the predicted codevector in the codebook. Computer simulation results show that the proposed method has a good performance with reduced computational complexity.