디지털 통신 시스템에서 데이터-재순환 LMS 알고리즘을 이용한 신호 간섭 제어

Signal Interference Rejection using Data-Recycling LMS Algorithm in Digital Communication System

  • 김원균 (조선대학교 컴퓨터공학과 정회원) ;
  • 나상동 (조선대학교 컴퓨터공학과 정회원)
  • 발행 : 1999.09.01

초록

본 논문에서, LMS 알고리즘의 수렴 속도를 향상시키기 위한 효율적인 신호간섭 제어기법을 제안한다. 수신 데이터를 재활용하여 심볼 시간 주기에 계수들을 곱함으로써 적응되는 제안된 알고리즘의 수렴특성이 수렴 속도의 향상을 이론적으로 증명하기 위해 분석한다. 스텝-크기 매개변수 $\mu$가 증가됨에 따라 알고리즘의 수렴 속도가 제어된다. 또한, 스텝-크기 매개변수 $\mu$의 증가는 실험적으로 계산된 학습 곡선에서 분산을 감소시키는 효과를 갖는다. 고유치 확산을 증가시킴에 따라 적응 등화기의 수렴속도를 천천히 제어하고 평균 자승 에러의 안정-상태 값을 증가시키는 효과를 나타내며 데이터-재사용 LMS 기술이 수렴속도를 (B+1)배만큼 증가시켜 필터 알고리즘에서 신호간섭제어의 우수성을 입증한다.

In this paper, an efficient signal interference control technique to improve the convergence speed of LMS algorithm is introduced. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, are analyzed to prove theoretically the improvement of convergence speed. According as the step-size parameter $\mu$ is increased, the rate of convergence of the algorithm is controlled. Also, a increase in the step-size parameter $\mu$ has the effect of reducing the variation in the experimentally computed learning curve. Increasing the eigenvalue spread has the effect of controlling down the rate of convergence of the adaptive equalizer and also increasing the steady-state value of the mean squared error and also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

키워드

참고문헌

  1. IEEE J. Select. Areas Commun. v.14 no.8 A Linear Minimum Mean Square Error Multiuser Receiver in Rayleigh-Fading Channels Po-An Sung;Kwang-Cheng Chen
  2. IEEE J. Select. Areas. Commun. v.14 no.8 Adaptive LMS Filter for Cellular CDMA Overlay Situation Jiangzhou Wang;Laurence II. Milstein
  3. Adaptive Filter Theory: Third Edition(International Editions) Simon Haykin
  4. Adaptive Signal Processing B. Widrow
  5. Proc. IEEE v.73 no.9 Adaptive Equalization S. U. H Qureshi
  6. IEEE Trans. on. Comm. An LMS Tapped Delay Line Equalizer using Each Tap Adaptation Nam Yong Kim;Chang Eon Kang
  7. IEEE Trans. Commun. v.43 no.2/3/4 An Inequality by Which to Adjust the LMS Algorithm Step-Size Jiangnan Chen;Roland Priener
  8. IEEE Trans. Communications v.COM-29 Application of Least squares Lattice Algorithms to Adaptive Equalization Satorius, E. H.;Pack, J. D.
  9. IEEE Trans. Communications v.COM-29 Application of Least squares Lattice Algorithms to Adaptive Equalization Satorius, E. H.;Pack, J. D.
  10. IEEE Trans. Acoust. Speech Signal Process. v.38 Tracking capabilities of the LMS adaptive filter in the presence of gain variations Bergmans, J.W.M.
  11. Proceedings of the IEEE v.78 Convergence properties and stationary points of a perceptron learning algorithms J. Shynk;S. Roy
  12. B.S.T.J. v.48 Adaptive equalization of high dispersive channels for data transmission A. Gersho