초록
The binder plays important roles in determining the quality of pigment coating. In addition to its primary role of binding the pigment to the base paper, the binder performs several other important functions. The binder, also referred to as the adhesive, is the dominant in the aqueous phase of the formulation. Thus it plays a major role in determining viscosity, rheology, water release, and setting time for the coating. Latices based on styrene-butadiene dominate the market for synthetic paper coating binders. Consumption is high and is expected to increase further due to the present tendeyncy toward high-solids coating. The purpose of this study is understanding the impact of various parameters of latex(i.e. Tg, Particle size) affecting prontabilities and optical properties of the coated papers, as well as providing basic information on the use of amphoteric latex for improving print qualities of coated papers. Recently, amphoteric latices, Which are cationic at low pH's but turn anionic at high pH's have attracted interests of paper scientists and engineers. Therefore we investigated the effect of the Tg(glass transition temperature) and particle size of amphoteric latex on the coating qualities. We also studied the effect of mixing ratios (Amphoteric / Anionic)of latex on the coating qualities. Our results showed that Tg and particle size of amphoteric latex have to be controlled for optimizing coated paper qualities. The formulation consisting of 10 parts of amphoteric latex and 5 parts of anionic latex gave best results in ink receptivity, smoothness, air permeability, opacity and sheet gloss. If the results hold for the industrial paper coatings, the amount of expensive amphoteric latex can be reduced while achieving best available printing quality.