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ABSTRACT

We will prove the existence of initial fuzzy closure structures. From this fact, we can define subspaces and
products of fuzzy closure spaces. Furthermore, the family A(X) of all fuzzy closure operators on X is a
complete lattice. In particular, an initial structure of fuzzy topological spaces can be obtained by the initial
structure of fuzzy closure spaces induced by those. We suggest some examples of it.

1. Introduction

The theory of fuzzy topological spaces introduced by
C.L. Chang [2] has been developed in many directions.
But the category of fuzzy topological spaces is not good
one to work in for many problems. So, many attempts
have been made to find suitable categories. One of
them, fuzzy closure spaces were introduced by A.S.
Mashhour and M.H. Ghanim [6] as a generalization of
closure spaces.

We will prove the existence of initial fuzzy closure
structures. From this fact, we can define subspaces and
products of fuzzy closure spaces. Furthermore, the
family A(X) of all fuzzy closure operators on X is a
complete lattice.

In particular, an initial structure of fuzzy topological
spaces can be obtained by the initial structure of fuzzy
closure spaces induced by those. We provide some
examples of it.

In this paper, all the notations and the definitions are
standard in fuzzy set theory.

2. Preliminaries

Lemma 2.1. [4] If /: X—Y, then we have the
following properties for direct and inverse image of
fuzzy sets under mappings: for 4, 1</ and v, vET

(1) v=£f"(v)) with equality if / is surjective.

(2) u<f-Y(fw) with equality if / is injective.

G) S T=v) =T

@ A T—p)=T1-fw if fis bijective.

(5) [ Vieavi ) =Viea f1(W).

(6) [ (Nicav) = Nica S (V).

(7) If A<y, then AA)<Ap).

(8) AV icaV) =Vies V).
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(9) fIN s All) = N e ) with equality iffis injective.

Definition 2.2. [2] A subset 7 of /¥ is called a fuzzy
topology on X if it satisfies the following conditions:

(0D 0, Te1, where T(x)=1, 0(x)=0, VxEX.

(02) If p, €7, then Y ALET.

(03) If =1 for each i€ A, then V,cy, €T

The pair (X, 1) is called a fuzzy ropological space.

Let 7; and 7, be fuzzy topologies on X. We say that 1
is finer than (1w is coarser than 1) if nC 1.

Definition 2.3. [4,6] A function C: /*~/is called a

Juzzy closure operator on X if it satisfies the following

conditions:
(CH € 0 )= 0.
(C2) C(A)=2A, for all AEF.
(C3) C(AV L) = CAV ), for all A, uE I~
The pair (X, O) is called a fuzzy closure space.

A fuzzy closure space (X, C) is called topological
provided that
(C4) C(CA)=C(D), for all AEF.

Let C, and G, be fuzzy closure operators on X. We
say that C, is finer than Cy(C, is coarser than Cy) if
Ci{A) =< Cy(A), for each A,

Theorem 2.4. [4] Let (X, 7) be a fuzzy topological
space. We define an operator C; : F—/ as follows:

C=Nu |l p=4, T-pe.

Then (X, C,) be a topological fuzzy closure space.

Theorem 2.5. [4] Let (X, C) be a fuzzy closure space.
Define 7.C /¥ on X by
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={ T-AEF | C(A)=A}.

Then:
(1) 7 is a fuzzy topology on X.
(2) We have C=C, iff (X, C) is topological.

Let (X, 7)), (¥; ©) be fuzzy topological spaces. A map
f(X, )Y, 1) is called fiuzzy continuous if £ ()€
7, for all uen.

Let (X, C)), (¥, () be fuzzy closure spaces. A map
fi(X C)—(Y, G is called a C-map if AC(A)=
Cy(f(A)), for all AEF,

Definition 2.6. [4,5] Let 0¢ B be a subset of I*. A
structure f is called a basis on X if it satisfies the
following conditions:

(B T€B.

(B2) iy AN EP, for all w, wEp.

A basis = {u, | i€} generates a fuzzy topology T
on X in the following sense:
Tﬁ :{ 05 u | .u:\/jEA,ujv .quBa AC”

Theorem 2.7. [4,5] (Existence of initial fuzzy
topological structures) Let (X, 7),er be a family of
fuzzy topological spaces, X a set and, for each i<1T,
fi: X=X, a function. Let

B=10#u=AL%" )| vET, for all KEK]

for every finite index set K={k,...k,} CI.

Then:

(1) B is a basis on X.

(2) The fuzzy topology 743 generated by B is the
coarsest fuzzy topology on X which for each i<, f; is
a fuzzy continuous map.

(3) A map f: (Y, )X, 1) is a fuzzy continuous
map iff for each i€ T, fi-f: (¥, T)—(X, T) is a fuzzy
continuous map.

Theorem 2.8. [4] Let (X, 7)) and (Y, ) be fuzzy
topological spaces. Then the following statements are
equivalent:

(a) A function f: (X, 7))—(Y, ) is a fuzzy continuous
map.

(b) /(X C)~( C) is a C- map.

(©) Cof ' W) =f(Cr(w), for each ue/"

3. Initial fuzzy closure spaces

Now, we will prove the existence of an initial fuzzy
closure space.
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Definition 3.1. Let {(X,, C)};e be a family of fuzzy
closure spaces. Let X be a set and, for each /€T, f: X
—X; a function. The initial structure C is the coarsest
fuzzy closure operator on X for which each f; is a C-
map.

Theorem 3.2. (Existence of initial fuzzy closure
structures) Let {(X, C)},rbe a family of fuzzy closure
spaces, X a set and f;: X—X; a function, for each i< T
Define a function C . = on X by, for each A/,

CQ) = inf ¥ infie of (AN

where the infimum is taken over all finite families {4,

| j=1,..., p} such that A=V%, A. Then:

(1) C is the coarsest fuzzy closure operator on X
which for each /<T, f is a C-map.

(2) If {(X, C)}ier is a family of topological fuzzy
closure spaces, then (X, C) is a topological fuzzy closure
space.

(3) Amap f: (Y, CH)=(X C)is a C-map iff for each
i€, fiof: (Y, CH—=(X, C) is a C-map.

Proof. (1) First, we will show that C is a fuzzy closure
operator on X.

(CD) It is easily proved from Definition 2.3.

(C2) For all finite families {4, | j/=I...., p} such that
A=V}, A, we have for each iET,

LS AN <L CHA)).
. Hence C(A)=A, for all A€/,

(C3) We will show that C(A)< () for A<

Suppose C(A) £ C(u) for A<u. Then there exists x
€X such that

C(A)x) > Cp)(x).

There exists a finite family {1, | &=1,..., ¢} such that
U=V, 1 with

CAN >V (infie ofe (CHEIMN).

On the other hand, since A<y, there exists a finite
family {A Ay | k=1,..., ¢} such that A=V, (A Apy,)
with

CA= Y infie oft (CHHAN 1))

< zg/l (infie rf N CHD))) -

It is a contradiction. Hence we have C(A)V C(u) <
C(AV ).

For any A, u&F, we will show that

CAVW=CAV C).

Suppose that there exist A, uE ¥ and x <X such that
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£ = CON (e)>CAXE) Y C).
There exist finite families {4, | j=1,..., p} and {g, |
k=1,.., ¢} such that A==V % A and u=V <, 1, with

t> _/;’/f infie rf; (CLAINIX),
1> (infie tf NCAAEINNE) -

There exists a finite family {4, 1 | j=1,..., p, k=1....,
gisuch that AV u=(VE HV (VL 1) with

1> (infierf N CHEHAMN)
V(Y Gnfie o (CREOME)
= CAV p)x) =1.

It is a contradiction. Therefore, C is the fuzzy closure
operator on X.

Next, we will show that C is the coarsest fuzzy
closure operator on X. We observe the follows from the
definition of C:

C) <infic of; (CHHAN)

<fUCHM)).

It implies that

HCAN<HEHNCHM)))

< C{f{(A)).

Hence for each i<T, f:(X, O)—(X, C) is a C-map.

Iffi: (X, C¥)y=(X, C)is aC-map forevery i< T, then
we have

JACHA) = C{f{V)).

It implies that
CHA =L HCHA))
<fUCHD)).
Hence
CHA<infierf (CLAA))- )
We have the followings: for all finite families {4 |
j=1,.., p} such that A=V [, 4,

CQAy=inf (Y, (infie oy {CHAN}

Zinf(V, (C*A)}  (by (A)

=inf {C*(}}lzI A)t ((C3) of Definition 2.3)
=C*(A).

(2) We will show that C(C(A))=C(%), for all AEF.

(by Lemma 2.1(1))

(by Lemma 2.1(2))

For every finite family {4, | /=1,..., p} such that A=
VA 2, we have

CAY=inf { Y, (infie i (CHAAIN)

(Since C; is a topological fuzzy closure operator,)

=inf{ ¥, (infierf (CAC{AADN}

(Since f(C(4))=Ci(f{A)) from (1).)

=inf { V (infie o (CHACADN}

(Since v, (C(A))=C(2) from (C;) of (1),)

=) .

Combined with (C2) of (1), we have C(C(A)=C(A).

(3) Necessity of the composition condition is clear
since the composition of C-maps is a C-map.

Conversely, suppose f; - fis a C-map. Then, for each
UEF, we have

SRCE @)= CHAF w)))
< C{f{(1))- (by Lemma 2.1(1))
It follows that for all i<T,

SCE M= (FAC ' w)))
<fINCH)).
Hence we have
ACY ) <infic { f(CH)). (B)

For all finite families {u, | j=I,.., p}such that
fA=VE w, we have

ACANZAC (AR
=AC G 1)
=AC (Y, (1))
=A(C )
=V ACH (1)) (by Lemma 2.1(7))
<, infe £ (CUAB)) (by (B))

Therefore f{C (A)<C(fA)) for all it ASF. Hence
fX CY)—>(X () is a C-map. O

(by Lemma 2.1(2))

(by Lemma 2.1(5))
(by Definition 2.3(C3))

Z

Theorem 3.3. Let {(X, C)}.c(in be fuzzy closure
spaces, X a set and f;: X—X; a function, for each i< {1,
2}. For each AEF", we define a function C*:F¥*—/ on
X by

CHAy=inf] {k,\i/l (infic o 20 (CHEA},

where the infimum is taken over all family {4, 4,}
such that A=A, VA,. Then C* is the coarsest fuzzy
closure operator on X which for each i< {1,2 }, fiis a
C-map.

Proof. Let C be the coarsest fuzzy closure operator
on X which for each i€ {1, 2}, f/ is a C-map from
Theorem 3.2 .

We will show that C*=C.

From the definition of C, it is easily proved C<C*.

Suppose C*(A) < C(A) for some ASF. Then there
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exists x&X such that

CHAx) > C(AY).

There exists a finite index K={1, 2,..., ¢} with {4, E
F | keK} such that A=V, A with

M) Y, AN AL CHAN).

Put an index set

FREK | CHGMNE) <A CHAANN)}
and L=K-J. Then we have the followings:

CAE >, (HCHANE AL CHANE)
=V NGV (Y, £ (CHADND)

ke

(By Lemma 2.1(5) and (C3) of Definition 2.3)

G, ANV (E (O, ANIX)).

On the other hand, let A=V 4, and 4,=V ;. 4 be
given. Then there exists a family {A,, A4;} such that A=4,
VA, with

CHA= (CAHGMN AL NG A}

VALHCHAIN AL (CAAA)}
<fiINCHEMN VL CAAD)).

It is a contradiction.

O

Using Theorem 3.2, we can define subspaces and
products in the obvious way.

Definition 3.4. Let (X, Cy) be a fuzzy closure space
and 4 a subset of X. The pair (4, C) is said to be a
subspace of (X, Cy) if it is endowed with the initial
fuzzy closure structure with respect to the inclusion.

From Theorem 3.2, for all finite families {4, | j=1,...,
p} such that /1:\/fi, A;, we have
CHy=inf Y, i (CHiAN)}
=infti"' (Y, (CiA))}
inf{i O, AN}

(by Lemma 2.1(8) and Definition 2.3 (C3))

= I(Cdi(D))).
Hence it follows Corollary 3.5.

(by Lemma 2.1(5))

Corollary 3.5. Let Cy be a fuzzy closure operator on
Xand i : A—X an inclusion. Define the function C: I
-/ on A by

C(A) = FNCHiA)).

Then (4, C) is a subspace of (X, Cy).

Definition 3.6. Let X be the product I1,c X; of the
family {(X, C)}.=r of fuzzy closure spaces. An initial
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fuzzy closure structure C=®C; on X with respect to all
the projections m,: X—X; is called the product fuzzy
closure structure of {C; | i€TY, and (X, ®C)) is called
the product fizzy closure space.

Using Theorem 3.2, we have the following corollary.

Corollary 3.7. Let {(X, C)}.er be a family of fuzzy
closure spaces. Let X=I1,cpX; be the product and, for
each /€T, m: X— X, a projection. The structure C= ®C,;
on X is defined by

C=infl Vinfier 7 (CLRAN},

where the infimum is taken over all finite families {4,
| j=1,.., p} such that ==V 7, A,

Then:

(1) C is the coarsest fuzzy closure operator on X
which for each i&T, & is a C-map.

2) Amap f: (¥, C)=(X, C)is a C-map iff for each
i€l m-f: (Y CH)=>(X, C) is a C-map.

Theorem 3.8. Let {(X, 7)},=r be a family of fuzzy
topological spaces. Let X be a set and, for each i<T,
f: X—X; a function. Define the function C:F*—1¥ on X

by
C) = infl ¥, infier £ (AR,

where the infimum is taken over all finite families {4,
| /=1, p} such that 2=V 7, A. Then we have

= T
where 7. is the fuzzy topology induced by C and 15 is

the one generated by basis § as in Theorem 2.7.

Proof. [f A< 7, by the definition of 7- from Theorem
2.5, we have

C( 1A = T-A

Thus, it follows that

A=1-C( T-1)
= T=inf{,infiecf; (ColfV)))
—sup{ A { T-infierf (CofV)}}
=sup( A supir{ T- £ (Clflv)})
=sup{fy supeer Y7 T-Clflu})
ViR Ly o T- i,

where the first V' is taken over all finite families {v,
| j=l,.., p} such that [-A=V[, v,
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Since C{f{Vv))=CACf{Vv))), using the fact 7=74
frorr~1 Theorem 2.5, we have
1-C{(fiv)E.

Put 11~-'( 1= Co(f(v))). By the definition of 7, we
have

zé/r‘u i ST

Hence A€ 73 from (02),(03) of Definition 2.2,

We show that < 73 implies S 7, equivalently, the
identity function 1 : (X, 7-)—=(X, 1) is a fuzzy continuous
map. From Theorem 2.7(3) we only show thatf; - 1 : (X,
T)—(X, 1) is a fuzzy continuous map, that is,

flvEr, for all vET,

SinceNV,E 7. then, by Theorem 2.5, we have
Col 1-v, )= T-v.
From definition of C, it follows that
C1=f1 v fINCH 1=£1 ()
= fINCAAEC T=vi D)
< fUCA 1)
FC1=v)
= T_ﬁl(Vi)
Thus, combined Xvith (C2) of Definition 2.3, we have
C( 1= w)= 1-£1(v).
Hence, by Theorem 2.5,
e

@©)

(by (L)

O
Let A(X) denote the set of all fuzzy closure operators
on X. For each C,, C,€A(X), we define C, 1 C,, G,V
C, as follows:
C, N C, is the coarsest fuzzy closure operator finer
than C, and C,,
(CV CYW=Ci() V Co() ¥ UEF,

Moreover, we define C° and C' as follows, for each
A

0, if A=0

1, otherwise,

A ={ c'=1

Then CY%C') is the coarsest (finest) fuzzy closure
operator on X.

Denote C, <G, if C, is finer than C,, that is, C}(1)=
Cy(A) for all A&,

Using Theorem 3.2, we can easily derive the
following corollary.

Corollary 3.9. The partially ordered set (A(X), [1,V,
<) is a complete lattice.
Example 3.10. We define C,, C,;EA(X) as follows

0, if A=0,
C(A) =4y, if 6¢/1£u1,
i, otherwise,
0, if A=0,
Cy(A) =, if 6¢Asu2,
i, otherwise,

If A<u, and A% u,, we have the following
statements:

For every families {A;, A;} such that A= A,V A,, from
Theorem 3.3, since A = A, V A, < u;, we have 4, <y, for
all k={1, 2}.

Furthermore, since A % b, without loss of generality
we may assume that A, £ (. Hence we have

(CANNCANV (Cl(A) A Co(A))
=W NAGANYV (@ A1)

=,

It follows C, T Cy(A)=u,.

If A<u, Vi, AL and A< ), we have the
following statements (A) and (B): (A) Put for eachi= {1,
2%, A=A Ay, It follows A <y, such that A, £ p, and
A» £ 1. Hence there exist A,, 4, F such that A=4, V A,

CA<(CIAN CAN V(Ci(A) N CoA))

=V . ey

(B) For every families {A;, A,} such that =4,V A,,

.from Theorem 3.3, since A=A,V 4, % u,, there exists &
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€{1, 2} such that 4, & u,. Hence we have
C) = inf { ¥, (CONACLAN}
= C(AIN CoA)
2 .
Since A=A, VA, £ b, there exists /& {1, 2} such
that A4, £ 1,. Hence we have

CAH=pw.

Since A<y, V l,, we have 4, # A;. It follows that
CAHZmV th. (2)
By (1) and (2), we have

CAF Y to.

Similarly, for other cases, we can define C: F—F as
follows:

0. it A=0,
Uy AL, it 0#ASU AL,
uy, it Asu,Ag u,,
co - 1 . 1 2
Uy, it Asp, AL
HiviLy if ASpy v, AL p, Ag Hy
i, otherwise.
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Example 3.11 Let A={x, y} and X={x, y, z} be sets.
Let v, wEH be fuzzy sets as follows:

vim=1 =3 e =
and
Vy(x) = % Vy(y) = % Vy(2) = %.

We define the fuzzy topology T as follows:

=10, 1, v, v}

Since l(v)=r'(w), put p=i'(v)=i"'(v). From
Theorenj 2.7, we have

ptLopd
Then 1={ 0, [, p}. On the other hand, we have

C:F—F as follows:

6, if A1=0

1-vy, if  0#A<l-vy,
CAA) =1~ . 2

1-v,, if 1=y, <A<ZI-v,

i, otherwise.

Since for /=1, 2, i(p) < T-viff p<( T-i''(v))= T-
U from Lemma 2.1, we have the followings:

0. if p=0,
SO =T, if psi-p,
I, otherwise.

TherefNore ‘we have
={0, 1, u}.
Hence we have 7.=13

O

Example 3.12 Let X be a set. Define 7, CH as
follows:

7={ 0, 1, o}, o=t 0, 1, ).

FromNTheorem 2.7, we have

B={ 1, ml), o), T A m ()}

We obtain an initial topology 75 as follows:

={ 0, L), w7 (), o A (), 7 ()
Vo ()}

Define C,:FX—F as follows:

0, if  p, =0,
Crlp)=q1-py, if 0#pSl-p,
1 otherwise.

’

From Theorem 2.4, Define C,:/¥—I¥ as follows:

0, if p,=0,
Crlp2)= =y, if  0%p,<l—u,,
1 otherwise.

Let m: XXY—X and m: X XYY be piojection
maps. Since for i=1, 2, 7{A) < 1-piff A < 1-ml(p)
from Lemma 2.1, we have the followings:

0, if A=0,

AT N(C o (y(A))) = 1=m (), i 0= A T—y (),
I, otherwise

and
0 if A=0,

73 (C o (my(A))) = 113 (), if 0 AST— 705 (1),

otherwise.

—_ =

3

By a similar method as Example 3.10, we can define
C: FXT—> XY ag follows:

0, if A=0,
(I-m () A(-751(1,)), if 0#A<
(A-m7 () A =75 (),

1= (), it AsT-m ),
AL -1 ()

o= 1-755 (1), it X~Si—7r2‘1(u2),
Ag Ty,

A-m\u)va-m' ), if A<
(=77 () v (=75 (),
AE -7 (),
AE -7 (),

otherwise.

1’
We obtain a fuzzy topology 7.CF*" as follows:
T(:{ Os l> ﬂlul(“])’ 7'[2_1(‘[12), ”1_1011)/\752_1(,U2)a n‘l—1

W)V ()}

Hence we have 7.=1.

O
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