JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.1, NO.3, SELPTLMBLER 1999 153

State Encoding of Hidden Markov
Linear Prediction Models

Vikram Krishnamurthy and H. Vincent Poor

Abstract: In ihis paper, we derive finite-dimensional non-linear fil-
ters for optimally reconstructing speech signals in Switched Predic-
tion vocoders, Code Excited Linear Prediction (CELP) and Differ-
ential Pulse Code Modulation (DPCM). Our filter is an extension
of the Hidden Markov filter.

Index Terms: Non-linear fillering, finite dimensional filters, state
estimation, speech synthesis, Markov jump linear systems.

L. INTRODUCTION AND PROBLEM FORMULATION

There are two main categories ol speech coding algorithms
[1]: waveform coders and vocoders. In waveform coders, the
data transmitted from the encoder to decoder specify a repre-
sentation of the original speech signal as a temporal waveform,
so that the reproduced signal at the decoder approximates the
original waveform. In contrast, vocoders do not reproduce an
approximation to the original waveform; instead parameters that
characterize individual sound segments are specified and trans-
mitted to the decoder, which then constructs a new and different
waveform. Vocoders operate at lower bit rates than waveform
coders but the reproduced speech quality, while intelligible, usu-
ally suflers from the loss ol naturalness and some of the unique
characteristics of an individual speaker are often lost [1].

In this paper we derive a finite-dimensional non-linear filter
that can be used in waveform coders as well as vocoders. Qur
filter is an exlension of the Hidden Markov filter and optimally
reconstructs the speech signal from the transmitted data. We will
focus on the application of our non-linear reconstruction filter to
three widely used algorithms, namely:

« Switched Prediction Coding (a vocoding algorithm)

« Code Excited Linear Prediction (CELP) (a waveform coding
algorithm)

« Differential Pulse Code Modulation (DPCM) (a waveform
coding algorithm)

The most basic linear predictive coder (LPC) for speech sig-
nals, models the human vocal tract as an auto-regressive (AR)
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process described by the difference equation [8, p. 270]:

P
n = ZCL Prei + Fptn + Grpn, n€ZT = {L2,... 1
1=1

(M

where u,, denotes white noise, o, denotes a periodic sequence of
impulses with “pitch™ period T}, F), and (G,, are gains thal allow
for voiced speech (F}, = 0) and unvoiced speech (G, = 0). 2-
dimensional versions of the above model are also used in the
coding of images (see Chapter 6 in [9]).

In vocoders, the encoder transmits the pitch period T}, the
gains (7,,, F, and the estimated AR model parameters ;. The
aim of the decoder is to reconstruct the speech signal r,, from
this transmitted information.

In CELP, a codebook of a number of excitation sequences is
maintained at encoder and decoder. After the AR parameters
(; arc fit lo the speech signal, the encoder searches the code-
book for the excitation signal that produces the best fit to the
original speech signal when the fitted AR paramecters are used.
Then, in addition to the information sent by the vocoder, the
CELP encoder sends the code signifying which of the codebook
excitation sequences gave the best fit. The receiver knows the
codebook, and aims to reconstruct r,, from this information.

In DPCM (see [9], Chapter 6) the actval (quantized) pre-
diction error excitation sequence is transmitted, rather than the
closest match in the code book. Given this prediction error se-
quence, the receiver aims to reconstruct r,,.

In all three coding algorithms, a short-coming of the basic
model (1) is that speech signals are known to be stationary only
for short intervals of time (e.g., order of 20-30 msec) so that the
AR coclficients ¢; are constant only over such short intervals.
Motivated by this non-stationarity, in this paper we focus on the
above three speech coders that allow for time-varying parame-
Lers.

Problem Formulation

Let X, denote an S-state discrete-time Markov chain
defined on a probability space (Q,F,P) with state space
{e1,¢€z,... ,es} wheree; denotes the unit S-vector with 1 in the
ith position. Denote the transition probabilities a;; = P(X, =
ej|Xn—1 = e;) and A forthe S x S matrix [a;], 1 <i,j < S.
Note that Y7 a,; = 1 for1 <4 < S.

1. Switched Prediction Vocoder: Switched prediction vocoders
belong to the class of forward adaptation algorithms (APF) (see
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Section 6.5 n [9]). In APF, fixed segments of input values are
bulfered and then transmitted after the p AR coefficients are es-
timated for the buffered segment.

In switched prediction vocoders |9, p. 301]. both the trans-
mitter and receiver have a bank of 5 predictors and adaptations
consist ol switching to one of these prediclors according to some
procedure. Since all the S predictors are pre-determined. there is
no need to estimate, quantize or transmit the AR (predictor) co-
efficients. Therefore, the side information transmitted is merely
the index of the predictor and this is significantly less than in
other APF schemes.

In this paper we model the switched predictor as a Markov
modulated AR process where the AR coefficients jump change
according Lo the realization of a finite state Markov chain. Such
a Markov modulated process captures the piecewise constant
behaviour of the AR coefficients in a swilched predictor. The
switched predictor encoder assumes that the speech signal rp, €
R is generated as

P
Th = Z Ci (nX—n—l) Tn—i + (F, )(77— [ > Uy, <C7V7 _5&’_77,_1)]3”7
i=1
up ~ white N(0,0,),
(2)

where F,G € R are gain vectors that allow for voiced or un-
voiced speech and (-, -) denotes the inner product in R®. The
encoder transmits the Markov chain X, through a noisy addi-
tive white Gaussian noise channel. Our aim is to design a de-
coder that optimally reconstructs the speech signal 7, from the
noisy obscrvations y,, of X,, assuming that the AR coefficients
¢ (X},), pitch period and gains are known.

2. CELP: QOur signal model here is identical to (2) except that
the encoder also transmits the code of the excitation sequence
i, (that best fits the speech signal) to the decoder. Since the
receiver also knows the codebook, assuming noise free trans-
mission, the excitation signal @,, is known at the decoder.

3. DPCM: The signal model is identical to (2) except that the
encoder also transmits the exact prediction error sequence. So
assuming noisc-less transmission, the receiver knows u,,. Such
a Markov modulated DPCM system Jies in the class of medium-
Lo-high-complexity DPCM systems [9, p. 252].

In a sense, the three coders described above span the range
from no knowledge to full knowledge of the excitation se-
quence u,: no knowledge (Swilched Prediction Vocoder). par-
tial knowledge (CELP), and complete knowledge (DPCM). No-
ticc in all threc coders that computing the filtered estimates
of the state of the Markov chain X, from the noisy data y,,
is straightforward: it is obtained using the standard Hidden
Markov filter (discrete-time Wonham filter) [2]. However, it is
not straightforward how to compute the filtered estimate 7, of
. Clearly the filtered estimate of (X1 r,—;) is not equal to
¢(Xn_1) #n_s, although the latter quantity js the conventional
reconstruction. In this paper we will use the reference proba-
bility method [4] together with martingale methods to derive a
finite-dimensional filter for reconstructing the speech signal 7.

The existence of such a finite dimensional filter is of indepen-
dent interest. It is well known thal if instead of y,,, noisy mea-

surements of r, were available, the optimal filter for estimating
1, 18 not finite dimensional [5].

Similar Markov modulated time series are also used in failure
detection and econometrics (see |3] and the references therein).
In the special case 7, = 0, the model is used for image-
enhanced target tracking [10].

This paper is organized as follows: Tn Section 1, we detail our
signal model and estimation objectives. In Section 11, finite
dimensional discrete-time filters and smoothers are presented
which yield estimates ol the state of the jump linear system.
Also computational issues are discussed.

II. GENERALIZED SIGNAL MODEL AND
ESTIMATION OBJECTIVES

Motivated by the Markov modulated AR process described in
Section I, we consider the following general signal model which
includes the Switched predictor vocoder and CELP as special
cases:

Sn = C(Xn—l) Sp—1 + <-F: 4¥n—1> U + <G7 Xn—l) Pn- (3)

Here X,, € {el s+« -, €, } 18 the Anite stalc Markov chain de-
fined in Section I and s, is assumed to be an N dimensional
vector. Also for each state e, of the Markov chain X, we as-
sume that C'(e;) isa NV x N matrix. vy, is assumed to be a zero
mean [V-vector noise process (specified below) independent of
X, and p,, is aknown N dimensional vector signal,

Remark: The jump linear model (3) includes the LPC model
(2) as a special case. For example, the Markov modulated
AR(2) process (with Markov modulated coefficients ¢ (X,—1)
and (3 (‘Yn.—l)):

Ty =01 (—Xu,—l) Trp_1+ (2 ()&r.,,,_l) T'p—g + F(Xn—l) U
+ G(JX—n—l) Pn Uy, ~ white N(O, Eu)

can be modelled as (3) with N = 2,

4)

L I Tn
Hg — i Pl 1
C(,Xn_]) — Cl (Axln—l) C?(}%n,—l.) :| , (5)
p P F Un
Uy = i 0 } .

O
« Switched Predictor Vocoder
Assume that X, is transmitted through a noisy channel so that
the decoder receives measurements y,, € R where

Yn = <,C], 4¥n—1> + Wy, Wy ~ White N(O, Ew)- (6)

!

In (6), g = (g1 gs..-gs) is the vector of levels (drift-
cocfficients) of the Markov chain and (-, -) denotes the scalar
productin R®. Also v, is white noise unknown to the receiver.

« CELP

Apart from the Markov chain state X, the codeword p,, for the
excitation sequence 7,,(;1,) € RY that best fits the speech sig-
nal is also transmitted. We assume that this “best fit” is reflected
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as follows: Denoting the sigma algebra V,, = 0{p,,m < n},
we assume that E{v,, (1in)|Vn} = 0n(ttn)s iy T, (1) is the
best estimate of v,.

Since the set of possible codewords is finite, for convenience,
we agsume that the codeword process {p,}, n € Z7, is mod-
elled as a finite state Markov chain independent ol the process
[X.).

The CELP decoder receives two sets of observations: vy, € R
defined in (6) and z,, where
Zn = fbn + Ty, Na ~ white N(0,Z,).

We assume that w, and 1, are mutually independent and also

independent of X, and v,,.

« DPCM
We assume that v, is a correlated noise process because of the
unmodelled dynamics caused by modelling errors such as se-
lecting a low order AR model in (2). This information is trans-
mitted throngh a noisy channel, 5o that the decoder receives two
sets of measurcments: y,, € R (6) and z, € R where

Zn =Un+Nn,  n~ white N(0,Z,).
We assume that w,, and 7, are mutually independent and also
independent of X, and v,,.

Notation: For any n € Zt, define the following sigma-
algebras: F,, = o{Xn,m < n}, Yo = o{ym,m <
ny, Ve = o{vm,m < n}, 2, = o{zmm < nl,
On = Foot VIV 20V Vy, ie., the sigma ficld generated
by ‘{JYm—laf’/m,a Ziny 'Um}, m<n, Oy =2, \/ Mn.

For any measurable process {¢,}, n € ZT, let (f),, =
E{4,|0,}, where E denotes expeclation under the probability
measure I°.

Aim: For fixed known values of A, ¢ and X,,, our aim is to de-
sign a filter at the decoder that optimally reconstructs the fltered
estimates §, = E{s,]0, }.

Remarks: 1. We do nor address parameler estimation in this pa-
per. Indeed, given @,,, the maximum likelihood estimates of A,
g, &, are readily obtained using the Expectation Maximization
(EM) algorithm (Baum Welch equations), see [2] or [12] [or de-
tails.

2. Note that in (6), the observation at time n depends on the
Markov state at time n — 1. This is reasonable from a dynamical
point of view as the reaction due to X,,_; is not instantaneous.
It is also possible to derive a filter when y, = (g, X»n) + wp.
We refer the reader to [6] for details. |

III. RECONSTRUCTION OF THE ENCODED SIGNAL

In this section, we derive an optimal finite dimensional filter
for computing §,.

A. Preliminaries

It is straightforward to show that the semi-martingale repre-
sentlation of the Markov chain X, is [6]

Xy = AXI'L—]. -+ ]V[7u (7)

where M, is a (I°, F,,) martingale increment.

We shall use the reference probability method to derive our
filters.

Define the probabilily measure Fy such that the G,,—; Testric-
tion of the Radon-Nikodym derivative of P with respect to [%
is

dP -
__ =A, = VY,
dPO [ Y l;lz;[l
where Y (Xm—1, Ym) ®

]‘ : -
=exp| — (<gn){m—l>2’ - Q?Jm, (!],—-Xﬂl_1>) -
23,

Then the following results hold [6]:

1. A, is a (P, @) martingale.

2. Under Py, ya, n € Z7 is a N(0,%,,) while process inde-
pendent of X,,. (This is a discrete-time version of Girsanov’s
theorem).

3. If ¢, n € Z7 is a measurable sequence, then an abstract
version of Bayes theorem states

_E_O{A” C,b'n, I C)n.}

(7))'7 = E{(/)n|0n} = EO{An‘On} .

9)

For notational convenience, define the unnormalized condi-
tional expectation o () = Eo{A, ¢,|0,}. Then o, in (9)
can be re-expressed as

(.Bn = Uﬂ(¢7z)/(7:7.(l):

i 10
where Un(l) = EO{ATL|OTL} = EO{J\I‘l|yn}7 ( )

where the last equality follows because Ay, and ), are indepen-
dent of Z,,.

B. Zakai State Filter

For notational convenience, let b;(Yn,) = Yn (s, Ym) where
Ym 18 defined in (8), that is:

bi(ym) = exp (— (9} — 2ym 97:)) ; 1=1,...,5.

(1D

23,

In the following theorem, we derive a recursive filter for
on(5n).
Theorem 1: The filtered state is given by on(s,) =

Zf_1 (85, X (i) where

g
Ta(sn Xn(@) =D Clej) on-1(sn—1 Xoo1(j))as bj(ya)
j=1
+ [F(J) Tn (Un) + G(J) pn] Tp—1 (—Xn—l (])) g b;/ (yn,) .
(12)
Proof: Leter € RV denote the unit N-vector with 1 in
the k-th position. Then the k-th component of 5, s

'9”'(k) = <-977,,€/‘~>
- el}" C(Xn’_l) $n—1 F <F7 ‘X—ﬂ—1>vn(k) + <G7 Xn—1)pn (k).
(13)



156 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.1, NO.3, SEPTEMBER, 1999

From (7) and (13), we have

Sn(k) Xn = e;c C('Xn—l) Sn—1 A Xn—J + [<F1 4Yn~1>7-7n(k)

+ (G, Xn_1)pn(k)] AX,,—1 + G,, martingale increment.

(14)

Then multiplying by A, and taking conditional expectations
with respect to O,,, we have

Un(sn(k) Xn) = elk Uvz(C(An 1) Sp— 1A_X” 1) . (15)

However, this is not in a recursive form because of the first term
on the RHS. So let us go back to (14). The trick is to take inner
products with the unit vector e;. So defining X;(¢) = (X, e;).
and post-mulliplying both sides of (14) by e; yields:

5, (k) Xn(i) = € C(Xp_1) sn1(A Xn_1,€p)
=+ [<F7 Xn-l)”n(k) + (G, Xn—1>pn(/’7)] <A X'n,—lzez>

-+ G, martingale increment.

(16)

Now using the identity (A X,,—1,e;) =

), eq) = Ele (Xn—1,€;) a;;, we have

g
s (k) Xn(5) = €}, C(
J=1

[F(7) va(k) + G(J) pn(k)] Xn_1(4) as
G,, martingale increment.

S (A (X,

€;) sn—1 Xn—1(J) @y
(17)

+

+

Multiplying both sides of the above equation by A,, yields
5

Anv5n —XW Ze C e_] Sp—1 X 1(7)aij Arz—l Fn
i=1

+ A, [F(J) vn (k) + G()rn (k)] Xoo1(4) Qij In

+ G, martingale increment.

Using the fact that X,,_1 (§) 7., = Xn—1(4) b;(y») and taking
conditional expectations with respect to (J,, then yields

Un(sn(k)X ())
. Z 60

+ [F(7) Tn, (Uw (}‘)) -+ G( )pn( )] Tn1 (Xn_1(7)) ai; b

3_7 Tn— 1(9n 1 Xn— 1( ))G,ij(yn)

5 (Yn)-
(18)
Finally stacking together (o, (5,(1) X (1)), 0, (5,(2) X1 (1)),
;0 (8, (N) X, (4))) and noting that (ej,es,...,e;) is
merely the S x 5 identity matrix yields the above result (12).

0O
To compute §,, we use (10) and Theorem 1:
S
8p = opn(sp)/on(l), where o,(1) = Z an(Xn(4)). (19)
j=1

y?l? Zﬂ
.‘l/ I z‘”, yﬂ, Xn M " 'é: ke
N HMM .| Non llr}ear
State Filter
Zn |0 (Vocoder) Uy,
*HMM (CELP)
Kalman (DPCM)

Fig. 1. Optimal Non-linear Decoder.

In the above equation, the unnormalized state estimate
70 (Xr (7)) is computed using the standard HMM state filter [6],
(2]

O'n.(—Xn (Z ) azj (yn) (20)

Edn nl

In summary, (12) and (20) together with the normalization
(19) provide a recursive optimal filter for §,. It only remains
to compule the filtered cstimate o, (v,,) for the three cases men-
tioned in Section I

1. Switched Prediction Vocoder: In this case, v, is white noise
unknown to the decoder; therefore o, (v, ) = E{v,} = 0.

2. CELPF: Since the code-book is known at the decoder, assum-
ing noise free transmission of the coderword ., (1.e., n, = 0),
then g, (vn) = 7, ().

For non-zero chamnnel noise (i.e., 7, is non-zero), fi, =
E{{r|Z,} can be obtained via the standard Hidden Markov
Model filter and o, (vy,) = U, (fir,). OFf course fiy, is continuous-
valued whereas the sct of codewords is finite. So in practice, the
closest code vector in the codebook to fi,, can be chosen. Alter-
natively, the Viterbi algorithim can be used to compute maximum
likelihood sequence estimates of the code vectors.

3. DPCM: As mentioned in Section II, in this case, v, is a cor-
related process transmitted via a noisy channel. In particular, if
vy, 18 a correlated linear process, then oy, (v,,) is obtained from
the Kalman filter (see [11] for the Kalman filter equations).

Fig. 1 shows the setup of our optimal decoder. In Case 1,0, =0
and the decoder consists of the standard HMM filter (20) to-
gether with our non-linear filter (12). In Case 2, 4, is obtained
as the output of another HMM filter. (If noise free transmission
is assumed, then v, = 7,.) In Case 3, 9, is obtained as the
output of a Kalman filter.

C. Smoothing

QOur aim here is to compute the smoothed estimate
E{sm(k)|Ox}. m < n. We only consider the cases where
vy, is either white noise or a known sequence to the decoder.
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For m < n, we have

S (k) JXP'n. = 'f""ln.(k) A —XI‘J.—l (,) 1)
-+ ¢ martingale increment, -
So

An sm(k) Xn=An1 A sm(k) Xn_1n

. . (22)
+ G martingale increment.

Taking inner product with e; and because X,_; =
E‘;’:l Xn—1(j) e;, we have the following resull.

Corollary 1: The smoothed estimate E{s,,(k)|O,,} is com-
puted as

o (5m(k))
(1)

:i%wm&w,

E{Srrﬁ.(k)lon} =

whete ¢, (s5m (k)

(23)

S
On(sm (k) Xn(i)) = Z aij on—1(8m (k) Xpn_1(4)) bj(yn)-
- @4)

D. Computational Issues

The complexity (number of real multiplications) for comput-
ing the Zakai filter ¢,,(s,, X, (4)) is O(S?) for each 4, i =
1,...,5. So the complexity required in computing o, (s,) is
O(S?) at each time instant.

Also the computational complexity involved in computing the
HMM state filter o, (X,,) (20) is O(S?).

The filters derived above have a similar structure to the Hid-
den Markov Model filters derived in [7]. Therefore the same
techniques used in [7] can be used for normalizing and scal-
ing the filtered variables to avoid numerical underflow. Also
as in [7], our filters are suitable for parallel implementation
e.g., on a sysiolic array architecture. In particular, note that
the filter for o, (s, X,(7)) is independent of o, (s, X, (i")).
i #1'. 80 0,(s, X, (7)) can be computed in parallel for each ¢,
1=1,...,5.

IV. DISCUSSION

Evaluating the performance of a speech coding algorithm is
rather subjective since it requires human listeners to judge the
intelligibility of the reconstructed speech signal. Therefore, we
stress that although our filter optimally reconstructs the speech
signal (under the modelling assumptions), practical studies are
required 1o evaluate the performance of the algorithm on actual
speech.
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