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Architectures for Arbitrarily Connected
Synchronization Networks

William C. Lindsey and Jeng-Hong Chen

Abstract:  In a synchronization (sync) network! containing N
nodes, it is shown (Theorem 1c) that an arbitrarily connected sync
network 3 is the union of a countable set of isolated connecting sync
networks {b;,4 = 1,2,...,L}, ie, } = U,{‘:] B;. It is shown
(Theorem 2e) that a connecting sync network is the union of a set
of disjoint irreducible subnetworks having one or more nodes. It
is further shown (Theorem 3a) that there exists al least one closed
irreducible subnetwork in 33,. It is lurther demonstrated that a con-
necting syne network is the union of both a master group and a slave
group of nodes. The master group is the union of closed irreducible
subnetworks in 33;. The slave group is the union of non-closed irre-
ducible subnetworks in 33,. The relationships between master-slave
(MS), mutual synchronous (MUS) and hierarchical MS/MUS net-
works are clearly manifested [1]. Additionally, Theorem 5 shows
that each node in the slave group is accessible by at least one node
in the master group. This allows one to conclude that the synchro-
nization information available in the master group can be reliably
Lransported to cach node in the slave group.

Counting and combinatorial arguments are nsed to develop a
recursive algorithm which counts the number Ay of arbitrarily
connected sync network architectures in an N-nodal syne network
and the number C'y of isolated connecting sync networks in 5.
Examples for N=2, 3, 4, 5 and 6 are provided. Finally, network
examples are presented which illustrate the results offered by the
theorems. The notation used and symbol definitions are listed in
Appendix A.

Index Terms: Synchronization Network, Network Pariition, Irre-
ducible Network, Master-Slave Network, Mutually Synchronous
Networlk, Hierarchical Network.

L. INTRODUCTION

A synchronization network contains numerous assets and
possesses numerous atiributes. In what follows, sync¢ nctwork
architectures are specified using Set Theory [2], [3]. In this pa-
per, it is convenient to refer to a set or subset as a nelwork or
subnetwork respectively. An arbitrarily connected sync network
is established by arbitrarily connecting a finite or countably in-
finite set of N nodes’. Each sync node in the arbitrarily con-
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! For brevity throughout this paper, the word sync will be used to represent the
word synchronization and the term sync network or simply network is used to
represent the lerm syrchronization network.

21In practice, the nodes are connected using network deployment guidelines.

nected sync network is assumed to be capable of processing all
arriving sync signals so as to align in time the sync information
stored locally with that contained in the arriving sync signals.
This sync information is required for extracting the transported
information (symbols. burst packets) between network nodes or
for rerouting the transported information communicated to al-
ternate network nodes. On the other hand, neiwork sync infor-
mation may be required for the purposes of deriving time-of-
arrival measurements needed 1o support network location, nav-
igation and/or guidance services. In either case, nctwork sync
information can be considered to be a commodity and a valu-
able network resource. A sync network is an isolated system in
the sense thal sync information never enters or leaves the net-
work. In this sense, a sync network can be considered to be a
circulatory system.

With regard to digital communication networks, there are two
major categories of sync information. One is conveniently re-
ferred to as the synchronization information associated with the
communications carrier. This sync information includes the car-
rier’s phase and frequency. Carrier synchronization information
at a network node implies aligning the locally generated car-
rier sync information with that contained in the arriving carrier
signal or signals. Associated with a modulated communications
carrier is the symbol timing (or epoch) associated with the clock;
this clock sets the rate of information flow. Epoch (event mark-
ing) information contained in the communication burst packets
or frame boundaries is also of great significance. These epochs
boundaries are recovered from the received frame sync words
or other special pattern streams contained in the communication
signaling and control channels. Epoch or time synchronization
among network clocks is also ol interest in location and naviga-
tion system design. In what follows, we are nol concerned with
specifying network sync techniques, [4]-[7], but rather with
characterizing archilectures for use in sync network design [8]—
[12]. The sync performance achievable when employing vari-
ous sync network techniques and network performance metrics
is covered elsewhere [1], [13]-[22].

The connecting relations betwcen arbitrary nodes are defined
in Definition 1. It is shown in Truth Table I that there are only
two connecting relations which satisly the three properties: re-
flexivity. symmetry, and transitivity. In this regard, two disjoint
partitions are provided in Definitions 4 and 3 in order to gain in-
sight into the properties of the Ay = 2V(M =1 possible network
architectures in an arbitrarily connected sync network. Theo-
rems will be provided which aflow for the investigation of the
flow of sync signals from node to node or from one subnetwork
to another in an arbitrarily connected sync network.

1229-2370/99/810.00 (©) 1999 KICS
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II. NETWORK NODAL CONNECTIONS

Definition 1: A synchronization link from node 4 to node j in
an arbitrarily connected sync network exists if a sync signal is
transmitted from node ¢ and is received and processed by node
: this is denoted by the directional symbol 7 — 7§, otherwise?,
i 7 j. In what follows, such a link serves to transport the re-
quired sync information discussed in the introduction. Other
symbols that will be used to denote connections between any
two network nodes ¢ and j are defined as follows: (a) the sym-
bol 4 <+ 7 will be used to denote two-way connected sync links,
(b) the symbol 7 = j will be used to denote one-way accessible
(perhaps via other nodes) between nodes 4 and 7, (¢) the sym-
bol ¢ < j denotes rwo-way accessible between nodes 7 and 7,
and (d) the symbol ¢ ~ 7 is used to imply directly or indirectly
connected network nodes. For mathematical completeness, we
will use the symbol 4 —  to imply node 4 is connected to itself*.
Networks having only one node are not interesting in practice.
This defines all possible connecting relations from a set theory
operation perspective. Further discussion of these nodal connec-
tion symbols is now given:

(a) Two nodes 7 and 7 are said to be two-way connected (or
i 4+ 7) by sync links if ¢ — j and j —+ 4; otherwise, 4 & j. This
implies that both nodes transmit sync signals to each other.

(b) If there exists a direct or indirect (via intermediale nodes)
sync link from node 7 to node j, we say that node ¢ can access
node jori = j,lie.,

dnodes zy = 4,29, ., T, ad Ty = 7,1 < < N — 1,
stz = ravVIi=1,2,...,m,
where N is the total number of network nodes; otherwise,
i 2 j. We will refer to these connecting paths as one-way syn-
chronization trails.

(¢)Ifi = jand j = i, then we say that i and 5 are two-way
accessible (ori < j); otherwise, 7 ¢ j. In such cases, the sync
signals are transmitled to and from node ¢ and j.

(d) Two nodes ¢ and j are said to be directly or indirectly
connected (or i ~ j), if there exists a connecting path via in-
termediate nodes between nodes ¢ and j, i.c.,

Jnodes 21 = 4,23, ..., Ty, and 2,0y = 4,1 <m < N — 1,
st (2 — wppa) or (Tye1 = 2),V1I=1,2,....m.

Otherwise, i & j. This does not imply that i = jorj = i
since there may not exist a one-way sync trail to transmil the
sync signal from node ¢ to node j or vice versa.

Definition 2;: An arbitrarily connected sync network b is de-
fined and established as follows. Step 1: Select a countably fi-
nite or countably infinite number of nodes and name the selected
nodes using distinct non-negative integers from 1 10 N. Step 2:
If N = 1, stop. A one-nodal network is obtained. If N > 1,
go to Step 3. Step 3: According to a decision rule, determinc
whether the sync link from node 4 to node j is connectedi( — j)
or not connected for each ordered pair of distinct nodes in an ar-
bitrary ordered pair of nodes (¢, 5),7 # 5,i,5 = 1,2,3..., N.
Since there are two choices for each ordered pair, there will be

#Herein we are only concerned with whether the nodes are connected or not;
however, the “strength” of this connection is of great imporiance in establishing
network performance for various performance metrics and will be taken into
account in a later paper.

4Therefore, one notes the connections: 4 ¢« 4,1 = 1,1 <> 4, and ¢ ~ .
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An = 2V =1 possible network architectures for an arbitrar-

ily connected sync network”. This number grows surprisingly
fast as the number of network nodes increases. For example,
il N = 10, therc are 455 = 2% > 10?7 possible network
architectures, and 4;p = 2°° network performances to estab-
lish. Therelore, the problem of selecting a particular network
architecture from this set by optimizing pertinent network per-
formance metrics is of great interest [23]-[30] as well as the
combining/breaking of networks to form a new network.

Example 1: Suppose 3 nodes are selected and numbered as
nodes 1, 2, and 3. In order to establish the network connectivity,
one could perform a Bernoulli trial to determine whether the
niodal connectivity from node ¢ to node 7 is established or not for
each of the following ordered pair of nodes (i,7): (1,2), (1,3),
(2,13, (2,3), (3,1), and (3,2). For this case, there are 23%2 = 64
arbitrarily connected sync network architectures.

Definition 3: Subnetworks within % and their connectivity
are also important. The connecting relations between any two
subnetworks F and F' in $ are defined as follows.

(a) E — F(one-way connected).

(b) E + F(two-way connected).

(¢) B = F(one-way accessible).

(d) B <= F(two-way accessible).

(e} B ~ F (directly or indirectly connected); F # F(isolated).
(0 ENF =10 (disjoint).

From Definition 1 (i — 4), if £ = F, then one can show that
E — F° We further elaborate on the connecting relations (a)
through (f) in what follows.

(a) Wesaythat ¥ — F,ifdi € E,3j € F,andi — 7;
otherwise, E # I". The sync signal can be transmitted from
subnetwork E to subnetwork F.

(b)Wesaythat £ < F,i[34i,5€ E,3k,qg€ F,i = kand
q — j; otherwise, 7 & F. At least one sync link is established
from a node in £ to a node in F' and vice versa from F' to E.
But this does not imply that any node in E can transmil a sync
signal to nodes in F' or vice versa.

(¢) Wesay that F = F,if3¢ € E, 37 € F,andi = j;
otherwise, E & F. The sync signal can be transmitted dircctly
or indirectly from at least one node in F to at lcast one node in
F.

(d) We say that £ < F,if £ = Fand F = E; otherwise,
E ¢ F. The sync signal can be transmitied directly or indi-
rectly from at least one node in E 1o at Jeast one node in F and
vice versa from nodes in F'to E.

(e) We say that F and F arc directly or indirectly connected
and denoted this by E ~ F,
itdi e E,3j € F,i ~ J; otherwise, E and F are called iso-
lated subnetworks or E o0 F. It is permissible that E 4 F
and F' A E but £ ~ F which means that there are no sync
links connected between E and F but they can be connected via
intermediate nodes not in 7 and F.

5This is cquivalent to considering that only one connecting relation exists in
the following lour cases for each non-ordered pair (7, 7) of distinct nodes in an
arbitrarily connected sync network: 1)4 4 jand 7 4 4.2)7 ~ jand § 4 4,
NiAjandj = 0,47 — jand j — 4. There are 4V =1)/2 possivle
network architectures.

STherefore, K <> E, B = E,E < E,and £ ~ [
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Table 1. Truth Table |

Connecling (1) Reflexivity | (if) Symmetry (ii1) Transitivity
Relation: B idi i jiff. ) epi 1f igpj, jepk, then ik,
— True False Fulse
— True Truc False
= True False True
= True True True
~ Truc True True

(f) We say that E and F are disjoint if ENF = {, i.e.., E and
F' do not have any comumon nodes.

II. PARTITIONING ARBITRARILY CONNECTED
SYNC NETWORKS

In order to identify the primitive building blocks and find suit-
able partitions for arbitrarily connected sync networks, the five
connecting relations given in Definition 1 must be examined
from an egquivalent relation perspective, [2], |31]. In mathemat-
ics, il a defined mathematical relation satisfies the three proper-
ties, (i) reflexivity, (ii) symmetry and (iii) transitivity, an equiva-
lent relation [2] is defined and a disjoint partition of the network
nodes based on this relation can be established.

Using Definition 1, Truth Table T can be readily verified.
From Truth Table I, one readily observes that there are two
disjoint partitions for the network nodes based on the connect-
ing relations < and ~ for an arbitrarily connected network 5.
These two disjoint partitions of 3 will be needed when Defini-
tiong 4 and 5 are introduced. In particular, a two-way accessible
class’ [31] can be defined using the connecting relation <. On
the other hand, a directly or indirectly connected class can be
defined using the connecting relation ~. The rellexivity prop-
erty indicates that the relation is valid for a one-nodal network.
The symmelry property indicates that there is no difference in
establishing this relation from node ¢ Lo j or from node j Lo 4.
The transitivity property indicates that when establishing this re-
lation from node 7 to node &, there is no diflercnce in orders to
connect the intermediate nodes between them. Therefore, when
applying Truth Table I to characterize the building blocks of an
arbitrarily connecled sync network 3, onc can show that: 1)
each node belongs to a two-way accessible (or a directly or indi-
rectly connected) subnetwork in 3, 2) different two-way acces-
sible subnetworks are disjoint, and 3) the arbitrarily connccted
sync network Is the union of all disjoint two-way accessible (or
directly or indirectly connected) subnetworks in sh.

Example 2: Two disjoint partitions [or the arbitrarily con-
nected sync network 33 illustrated in Fig. 1 are demonstrated
as follows.

(a) Partition $ according to the two-way accessible relation
(<):

% ={node 1} U {2,3,4,5} U {6,7,8} U {9,10}
U{11}u {12,13} U {14,15}.
(b) Partition 35 according to the directly or indirectly connected

"Class is a mathematical term; usually, it stands for a subset (referred as a
network or subnetwork in this paper) defined by a relation which satisfies the
three propertics in Truth Table T .
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Fig. 1.  One architecture for an arbitrarily connected sync network
(N=15).

relation (~):
R ={noded,i=1,2,...,11.} U {12,13, 14, 15}.

Partitioning of 5 is similar to putting distinct balls (nodes)
into indistinguishable boxes (subnetworks). The same partition
of an arbitrarily connected sync network 33 (according to a spec-
ified class) is always obtained and there is no difference in ihe
orders of putting balls into indistinguishable boxes. Besides,
each subset in (b) is a union of disjoint subsets found in (a). This
observation motivates one to apply further partitioning of (b) in
later scctions. Suppose one tries to partition 3% based upon the
relation «+. In this case, one will have trouble deciding which
subset to put node 7 into since node 7 is two-way connected to
nodes 6 and 8. However, nodes 6 and & are not two-way con-
nected so nodes 6 and 8 cannol be put in the same subset. Simi-
larly, there are no disjoint partitions according to the connection
relations —+, +» and =

Definition 4: The connecting sync networks based upon the
connecting relation “~" that results [tom partitioning an arbi-
trarily connected sync network are defined as follows.

(a) A subnetwork E C 3 is said to be a connecting sync
nerwork if

() If ke E,j€ Ethenk ~ j.
(i) f ke Kk~ jthenj € E.

Property (1) indicates that any two nodes in a connecting sync

network are connected. Property (ii) forces subset E to be a
maximal® sel containing all nodes in $ which are connected to
node k. We will denote the i’/ connecting sync network by the
symbol 2;.

(b) A subnetwork E C % is said to be closed, if ¥ € E and
J & £ imply that j + k. In fact, propertics (i) and (ii) can imply
(b) and all connecting sync networks are closed”. Therefore, a

SHere a set of nodes B C 3 is said to be a maximal set if B has the largest
number of nodes in s and satisfies properties (i) and (ii).

9 Hercafter, we will use the term connecting svac network o represent a closed
connecting sync nerwork.
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Table 2. Distribution of possible sync network architectures for an
arbitrarily connected sync network 3 containing N - 2 nodes; A» = 4.

L | Ni,Na2,...,NL Number of Possible Syne Network

Architectures for 3 as a Function of L.
LI [Fnllsgllcac) = 1
1 2 (2 =4,—1=3

(&)

Table 3. Distribution of possible sync network architectures for an
arbitrarily connected sync network 35 containing N = 3 nodes;

Az =64,
L | Ny,Na,...,Ng Number of Possible Sync Network
Architectures for 3 as a Function of L.
3 111 [ﬁ][qlmm“ 210Gy ]
2 1.2 [1?;'1[ g }[CLC} 9
1 3 Cy=A3—-1-9_54

connecting sync network E is connected as one-cluster without
any isolated (Definition 3e) subnetworks which have no sync
links to or from the rest of nodes in E.

Theorem 1: The connecling relations between two connect-
ing sync networks are:

(a) Two isolated networks are disjoint. Two disjoint networks
are not necessarily isolated.

(b) Two different connecting sync networks are isolated.

(c) An arbitrarily connected sync network is the union of iso-
lated connecting sync networks, i.e., 3 = UI.L_:] 3h;; where L is
the number of connecting sync networks in 3. '

Froof:

{a) Suppose that B and F' are not disjoint and at least one
node (say 1) is in F and in F. According to Definition 1,7 ~ 7
and E and F are not isolated.

(b) Suppose that two connecting sync networks £ and F' &
% are not isolated and they are connected directly or indirectly
from intermediate nodes. According to the Definition 4a-(ii), we
have I/ = I which is a contradiction.

(c) Each nodc belongs o a connecting sync network 3; in 3

JOURNAL OF COMMUNICATIONS AND NETWORKS. VOL. 1, NO.2, JUNE 1999

according to a directly or indirectly connected relation. From
(b), the connecting sync networks are disjoint and isolated.
Therefore, an arbitrarily connected network is the union of iso-
lated connecting sync nctworks by the mathematical equiva-
lence relation [2] presented in Truth Table 1. O

Since an arbitrarily connected sync network % is the union of
L isolated connecling sync networks (3 = Uj.“:.l ;) (Theorem
1), it is shown in Appendix B that the number Ay of different
sync network architectures for 33 is given by

Ay =2NVV=D)

N
=2
L=1

NLJ (1)

>
 N=N,I

NI
{Nl!_/vg!_.. '
(i N)

<N, <

][CNICNq Cr,] s

1
>< e —
vyllvgt !

where N; is the total number of nodes in 3;, C}, is the total num-
ber of possible sync network architectures for a connecting sync
network having k nodes, and v; is the number of connecting
sync networks 35, in 3% which have node number j,1 < 7 < N.
Finding the number C directly is a difficult problem and there
appears to be no closed form for Cn. An easicr way to specify
(' is to use a recursion method starting from C; = 4, = L.
Since the number Cyy is a special casc of Ay when all V nodes
are directly or indirectly connected (for the case L = 1), one
can readily show from (1) that if N > 2, then

f N ;N!
Cn =Av = > {Nl!N-)!...NL!}
L=2\(3"F | N,=N1<N,<N) - (2)

1 t
|:U1!V2!l/:;!...1/N!:| [CN1 CN2 CNL]

By using (2) recursively, onc can specify C'y from Ay and
C,,i=1,2,...,N — 1. Several examples of the distribution of
possible sync network architectures in an arbitrarily connectad

Table 4. Distribution of possible sync network architectures for an arbitrarily connected sync network 3h containing N --

4 nodes; A4 = 4096.

L | N1,Na,...,N; | Number of Possible Sync Network Architectures for s as a Function ol L.
4 1.1, [%][ Uovo!ov][c’ =1
3 1.1.2 [ﬁ{qg][mvolol][clc’} =18
2 = [1?!%'}[1vo'1vo'J[(“103| =216
2,2 [;;U }[0!01010!“C 3 ] =54
1 4 Co= A1 —1-—18 - 216 - 54 = 3807

Table 5. Distribution of passible sync network architectures for an arbitrarily connected sync network 3 containing N — 3 nodes; As = 1048576.

L | N1,N3,...,Nr | Number of Possible Sync Network Architectures for 3 as a Function ol L.
5 LLLLL ) s [CF] = L
4 L1L2 [”1"11?51)1“%“0307} =30
3 113 [l smmme[CiCe] = 510
1.2.2 (o e (1 C5] = 135
2 1.4 |35 ) Trommai[C1 Cal = 19035
2.3 [ 5251 ) i) [C2 Ca] = 1620
1 5 (s = As — 1 — 30 — 540 — 135 — 19035 — 1620 = 1027215
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Table 6. Some specific values for A, C'x and their ratios.

[N An [ [ [ On/AN [ Av_1/Ax [ Onv_1/Cn |
1 1 1 100% — —
il 1 3 75% 25% 33.33% T ‘ 2] 1
3 o4 3 54.35% 6.25% 5.56% : \5/
4 4006 3807 92 949 1.56% 1.42% I
3 1048576 1027215 97.96% 0.39% 0.37% -
6 1073741824 1067309298 99.40% 0.098% 0.096% o1 1\/2

sync network containing N=2,3,...,6 nodes as a function of L =
1,2,...N, are provided in Tables 2 to 6.

For example, for the case I = 2 in Table 3, without loss of
generality, one can choose $; = {node 1} and %, = { nodes
2, 3}. This results in three choices for connecting nodes 2 and
3 together (2~3). Therefore, one has a total 3 x3=9 choices for
the case L = 2 since each node can be placed in ;. In fact,
all possible sync architeclures in an arbitrarily connected sync
network containing N = 3 nodes are illustrated in Fig. 2. The
architecture (plesiochronous case) in the top-left-hand corner is
the only architecture for the case L = 3. For L = 2, there are
nine architectures indicated by the dark blocks. The remaining
54 architectures are for the case L = 1.

Table 7 demonstrates that the case L = 1 containg most of the
total number Ay of possible sync network architecturcs. When
the total number of nodes N approaches infinity, one readily
notes from (2) the interesting limiting ratios:

. Oy
Il S 3,
N Ay -
11 A——OV1<K<N 1, (3b)
Nl—rr%o AN
hm( =0LVI<K<N-I. (3¢)
N—=oo CN

IV. PARTITIONING CONNECTING SYNC NETWORKS

Partitioning of arbitrarily connected sync networks into a set
of connecting sync networks was presented in Section III. The
connecting relations and properlies of connecting sync networks
are investigated in this scction.

Definition 5: The resulting irreducible subnetworks based

[
_‘u/()-‘
[
[
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L
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]

- (=]
- u! -
u}//
ff
e
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—2 I—»2
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-

‘L.

h 2

s

Fig. 2. Az = 2%%% = 64 possible sync network architectures for a
three-nodal arbitrarily connected sync network.

VN

upon the connecting relation “<>” for partitioning a connecting
sync network are defined as follows.
(a) A subnetwork £ C 33 is said to be an irreducible subnet-
work of 3% if
(i) ke E,j€ Ethenk & j.
(i) ke B)k< jtheny € E.

One should be cautioned that nodes in E are allowed 1o ac-
cess nodesg not in E; the reverse statement is also true. Property
(1) indicates that arbitrary nodes k and j in £ are iwo-way ac-
cessible. Property (ii) forces subnetwork E to be a maximal
subnetwork containing any node j in % that can rwo-way access
korj <k

(b) An irreducible subnetwork & C 34 is said to be closed. if
k€ Fand j € E imply that j # k. One should be cautioned
that the nodes in E are allowed to access nodes not in E; the
reverse statement is not true.

Table 7. Distribution of possible sync network architectures for an arbitrarily connected sync network 34 containing iV = ¢ nodes;
A = 1073741824,

L | Ni,Na,...,N; | Number of Possible Sync Network Architectures for # as a Function of L.
6 IRRIRE [1z1!1?!1!1!nMG!oxo!lozmov}[Cﬁ}_1
5 1L1,1,1,2 (e |t (CA Ca) = 45
4 L1,L3 o) [ 3o [CF Cs] = 1080
1,122 [t [ smmiamma [CECE) = 405
3 1,14 (o s [ €2 Ca] = 57105
1,23 [ romr ) st [C1 Ca ) = 9720
2,22 [>' ’;2!1[0'3'0'[1'0'0'][C 3} = 405
2 1,5 (5] oo (1. Cs] = 6163290
2,4 I ?‘ Al origtorg [C2Ca] = 171315
33 (25 [ ommemmrl[Ca] = 29160
1 6 Co=Ap—1—45—1080 - ... — 171315 — 29160 = 1067309298
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(¢) A closed irreducible subnetwork is called a master irre-
ducible subnetwork.

(d) A non-closed irreducible subnetwork is called a slave ir-
reducible subnerwork.

According to Definition 1, Definitions 5(a)-5(b) are valid for
node niumbers in E equal to or greater than 1. One should notice
that Truth Table I implies that two connecting sync networks in
an arbitrarily connected sync network are either disjoint or they
are the same.

If £ and F' are two connecting sync networks in an arbitrarily
connected sync network and E # F', then £ 4 F since F and F
cannot be connected via a third connecting sync network in %,
On the other hand, if F and F' are two irreducible subnetworks
in a connecting sync network ; and £ # F, then £ ~ F.
Irreducible subnetworks E and I can be connected directly or
via a third irreducible subnetwork in 33;.

Theorem 2: Supposc that £ and F' are irreducible subnet-
works in a connecting sync network ;. Il E # £, then

(a) £ ¢ F : two ditferent irreducible subnetworks cannot
be two-way connected.

(b) E 4 F : two different irreducible subnetworks cannot
be two-way accessible.

(¢) E ~ F : two different irreducible subnetworks are dir-
ectly or indirectly connected.

(&) ENEF = 0 : two different irreducible subnetworks are

disjoint.
(e) A connecting sync network is a union of disjoint irredu-
cible subnetworks.

Proaf:

(a) Suppose that £ — F and F' — E, then EU F is an
irreducible subnetwork. This is a contradiction because the irre-
ducible subnetworks E or F are defined as the maximal set of a
two-way accessible relation in Definition 5(a).

(b) Suppose that £ = F and I = E. then the union of
E, F and all inlermediate nodes required to establish £ = F
and F = FE is a new maximal set defined as an irreducible
subnetwork in Definition 5a. This is a contradiction.

(c) Subnetworks E ~ £, since arbitrary nodes ¢ and j are
connected in a connecting sync network.

(d) Suppose that wreducible subnetworks £ and F' are not
disjoint and there exists node ¢ which is in £ and in F, then
E U F is an irreducible subnetwork since node 7 can access all
nodes in F and in F. This is a contradiction. :

(e) One should notice that the irreducible subnetwork in Defi-
nition 5a is a ¢lass defined by the two-way access relation which
satisfies Truth Table I. When characterizing all nodes in a con-
necting sync network 3b,, three results are obtained from Truth
Table I: 1) each node in &; belongs to an irreducible subnet-
work, 2) all irreducible subnetworks are disjoint in 35;, and 3)
3, 1s the union of all irreducible subnetworks in 3%; by the math-
ematical equivalence relation given in Truth Table L. |

Justification for these two partitions provisioned for in Truth
Table 1 and defined in Definitions 4 and 5 is explained as fol-
lows. The first partition of s (Definition 4 and Theorem 1) is
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found by use of intuition since there are no sync signals ex-
changed between two isolated connecting sync networks. In
addition, if the sync signals can be transported between any two
nodes in a specified subnetwork in s, then it is nol necessary
to perform further partitioning in this irreducible subnetwork
(Dcfinition 5 and Theorem 2). Irreducible subnetworks are the
smallest building blocks of interest when investigating the flow
of sync information in .

Theorem 3: If one traces a sync signal path through the net-
work starting from arbitrary node (o its originating or source
node in a connecting sync network, one will always end up at a
masier irreducible subnetwork. Theorem 3 will prove this exis-
tence [or finite value of V.

(a) In a connecting sync network. there exists at least one mas-
ter irreducible subnetwork.

(b) If F'is a closed subnetwork in a connecting sync network,
then there exists at least one master irreducible subnctwork in
£

Comment: Theorem 3 establishes a surprising result, It
demonstrates that by connecting sync network nodes with direc-
tional sync links into one-cluster (a connecting sync network), at
least a part of the connecting sync network'® will naturally be-
come a master irreducible subnctwork. If one breaks a connect-
ing sync network into several new connecting sync networks, at
least one master irreducible subnetwork can be found in each
new connecting sync network since each connecting sync net-
work is cfosed (Definition 4b). Such architectures are, no doubt,
of great significance in scientific disciplines such as biology and
physics as well as in the subjects ol religion and architccture of
societies''.

FProof:

(4) Suppose that a connceting sync network is only an irre-
ducible subnetwork, it is isoluted trom all other nodes in .
Therefore, it is closed from Definition 5b. Suppose that a con-
necting sync network is the union of finite X' > 2 non-closed ir-
reducible subnetworks £, 1 < 4 < /', Since all nodcs are con-
nected in a connecting sync network, all non-closed irreducible
subnetworks E; must be accessible by at least one irreducible
subnetwork E;, (i # 7). Without loss of generality, arbitrary ir-
reducible subnetworks £ and Es are picked firstand Es — [7.
Since E» is nol closed, there exists an £ such that By — E.
According to Theorem 2b, two irreducible subnetworks cannot
be two-way accessible and therefore By # E7. By repeating
this argument, one has F;) — E,,1 <4 < K —~ 1. Since
K is finite and all other irreducible subnetworks cannot be rwo-
way accessible 10 Ey (Theorem 2b), Ey is closed. This is a
conlradiction.

(b) Since the rtwo-way accessible property in Definition 5a is
not closed (Definition 5b), a closed subnetwork cannot include a
subset of an irreducible subnetwork. Thus, a closed subnetwork
E in a connecting sync network is the union of disjoint irre-
ducible subnetworks. Therefore, from similar arguments pro-

101f a connecting sync network is only an irreducible network. it is closed in
% since two connecting sync networks in 3 are isolaied. The whole neiwork
becomes a master group which has only onc masier irreducible subnetwork.

N For example, one may assume that the masrer group represents the Gods
or leaders and their commands can be delivered 1o all other people in the slave
group.
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vided in (a), the theorem is proved. O

In conclusion, connecting sync networks 3, are the smallest
isolated building blocks for an arbitrarily connected sync net-
work 3 and there are no isolated subnetworks in ;. On the
other hand, irreducible subnetworks are the smallest building
blocks of a connecting sync network 33, and there are no closed
subnelworks in an irreducible subnetwork.

V. DECOMPOSITION OF THE ARCHITECTURE OF
ARBITRARILY CONNECTED SYNC NETWORKS

In this section, we succinctly summarize the results developed
thus far in this paper. From Theorem 1c¢, an N-nodal (N > 1)
arbitrarjly connected sync network s is the union of L isolated
connecting sync networks, 2, ¢ = 1,2, ..., L in which 3, has
N; nodes. According to Theorems 2e and 3a, there exists at
least one master irreducibie subnetwork such that the connecting
sync network 3;, is the union of: 1) a master group of nodes M;
which is the union of A, master irreducible subnetworks, A;;.
and 2) the slave group of nodes S; which is the union of K,
slave irreducible subnetworks, S;;. Furthermore, there are K,
master irreducible subnetworks in A{; which have only one node
and K2 = K, — K1 master irreducible subnetworks in
M; which have at least two nodes. The j** master irreducible
subnetwork in M; has m;; nodes and the total number of nodes
in the master group M; is m;.

In summary, the architccture of an arbitrarily connected sync
network can be characterized in lerms of these subnetworks and
is concisely set forth using set theoretic notation as (4) shown at
the bottom of this page.

Equation (4a) is a disjoint and isolated partition for s5. Equa-
tion (4b-d) are disjoint but not isolated partitions for ;. Equa-
tion (4) says that a connecting sync network is characterized
by the parameter set I5=(N;, m;, K1, Ko, K;,) forall § =
1,2, ..., L. The architecture of the i** connecting sync network
3; in 3 1s illustrated in Fig. 3.

Definition 6: Two types of connecting sync networks that
contain only one master irreducible subnetwork in a connecting
sync network are defined as follows:

I
m, .=4,""" m,, =2
i
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Fig. 3. Architecture of the i*® connecting sync network, b; .

(a) A connecting sync network 3; 1s called a master slave
(MS) network, if there is only one master node in the mastcr
group (K = Ky = 1, Ky = 0and mpy = 1),

(b) A connecting sync network %; is called a mutual syn-
chronous (MUS) network, if there is only one master irre-
ducible subnetwork having at least two nodes (K, = Kijppz =
1, Ky = 0,and my,; > 2).

Using Definition 6 and the network model for %; in (4), a
hierarchical MS/MUS network archilecture is obtained if the
slave irreducible subnetwork does not form an empty set. If
there exists more than one slave irreducible subnetworks, a mul-
tilevel hierarchical MS or MUS network architectures can be
realized,

Theorem 4: The connecting relations between two irre-
ducible subnetworks in a connecting sync nctwork are charac-
terized by Theorem 2. The additional connecling relations be-
lween the master group and the slave group of nodes and the
master and slave irreducible subnetworks in 3; are character-

L L
3%:Us&i,lngl\f:ZN,—;&Szﬂ%j:@,32:.,;7&3%.7-,Vz'yéj. (4a)
7=1 =1
$o=MUS;, i=1,2,.,LiM;N S =0, Vj, k. (4b)
Kin _
M, = U Mijy 1< K = Kyt + Kimz < Max {17 N; -1 } s Mg N My = 0, v (4,7) # (k,1). (4c)
j=1
K;,
Si=1J8,,0 €Ki <N; 1,850 8 =0, Y (i, §) # (k,1). (4d)
j=1
Kim
1<m;=Y my < N;, 1 <my; < N, (4e)
=1
mi; =1, for1 < 7 < Ky, and my; > 2, for Ky + 1 < j < Kjyy,. (4f)
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ized as follows: Vi, 1 <i< L, and Vj, 0 <7 <N, — 1.

(a) M; — 8;: there exists at least one sync link from the
master group to the slave group.

(b) S; # Mj;: there are no sync links connecting the slave
group to the master group.

(c) S; # M;: the nodes in the slave group cannot access any
node in the master group.

(d) M; ~ S;: the master group and the slave group are di-
rectly or indirectly connected.

(e) M; N S; = 0: the master and slave groups are disjoint.

(f) M;; # Mjy: there are no sync link connections between
different master irreducible subnetworks.

g) M;, # M;;: the nodes in any master irreducible subnet-
work cannot access those nodes in all other master irreducible
subnetworks.

(h) S;; # M;,: there are no sync links connecting any slave
irreducible subnetwork to any master irreducible subnetwork.

(i) S;; # M;,: the nodes in any slave irreducible subnetwork
cannot access nodes in any master irreducible subnetwork.

() M;; — S;: there exists at least one sync link which con-
nects each master irreducible subnetwork 1o at least one node in
the slave group.

Proof: Theorem 4 can be easily proved using all of the
previous definitions and theorems. O

Theorem 5: For any node j in the slave group S;, there exists

at least one node, say i, in the master group M, such that{ = j.

Proof: Assuming that there exists one node j in the slave

eroup of nodes which is not accessible from all nodes in the
mastcr group, i.e.,

Fnode j € S;, Vnodei € My, i # j.

The connecting network h; can be partitioned into three subnet-
works, i.e.,

32)7; = ]\4—L U F_) U -F."h

where F5 is the subnetwork of all nodes in S; which can access
node j, and F; contains the remaining nodes in S, which cannot
access j. In addition,

Vie M;UFy,VkeFsisk

Since there are no sync links from the slave group to the masler
group (Theorem 4b) and all network nodes in 34; are directly or
indirectly connected, one can readily conclude that

M;— Fyand Fy, — Fzie,dre f’b,a qc Fg,T' —+q.

Therefore, from Definition 5b, F3 is a closed subnetwork.
From Theorem 3b, there exists a master iireducible subnetwork
in F, which gives a contradiction. a

Theorem 6: If there is only one master irreducible subnet-
work (K,,,=1) in #;, then each node in the master group can
access all other network nodes in ;.

Proof: Theorem 6 can be proved by following the same
partitions and derivations used o prove Theorem 3. O
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VI. BREAKING AND/OR COMBINING CONNECTING
SYNC NETWORKS

In practice, it is of interest to investigate the effect on network
performance when breaking (failures of network nodes) or com-
bining (adding new network nodes) connecting sync networks.
A few significant facts are readily observable from the theorems,
viz.,

(1) There exists at least one master irreducible subnetwork in
each new connecting sync network when breaking sync links or
adding new sync links or network nodes.

(2) If a connection in a connecting sync network is broken or a
network node fails, new connecting sync networks and/or new
master irreducible subnetworks may result with new network
sync architectures.

(3) Without breaking the original connections, when two con-
necting sync networks are connected together so as to create
a new or combined network, the slave groups from both con-
necting sync networks will never become a subnetwork of the
new master group. Therefore, when combining connecting sync
networks, it is recommended that this be accomplished by con-
necting the master groups. This avoids creating a higher-level
network architecture [11], [12] than what appeared in the origi-
nal network.

Example 3: Consider an arbitrarily connected sync network
% consisting of the union of the two isolated connecting sync
networks %7 and 3% illustrated in Fig. 1. One can readily show
from (4) that

(a)

2= 3 Uy,
$i=M;US;,i=1,2,
My =Ji Miy = {1} U {2,3,4,5},
Sy =i, Si; = {6.7,8} U {9,103 U {11},
]\/_[2 == _[\/fgl = {12, 13},
Sg - 521 = {14, 15}

(b) IFf the sync link from node 4 to node 9 in Fig. 1 is broken,
then the resulting arbitrarily connected sync network is broken
inlo three connecting sync networks. In particular, one can show
that:

3%:32)1 U%gul&g,
;= M;US;,i=1,2,3,
M, = {1} u{9,10},
i = {6,7,8} U {11},
]\/_[3 = {2,3,4,5},

S; =10.

and 55 is the same as in (a). A new connecting sync network 33
(which is a MUS network) and a master irreducible subnetwork
{9, 10} is generated.

(¢) If one sync link from node 5 to node 12 is added to Fig. 1,
then the resulting arbitrarily connected sync network becomes a
connecting sync network. In particular, one can show that

R=d =M US5,

M, ={1}U{2,3,4,5},
S = {6,7,8} U{9,10} U {11} U {12,13} U {14,15}.
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The original master group M> in (a) becomes a subnetwork of
the new slave group.

(d) If one sync link from node 10 to node 14 is added to
Fig. 1, then the resulting arbitrarily connected sync network be-
comes a connecting sync network. In particular, one can show
that

32):3?)1 :.ZV[:[US]_,
M, ={1}U{2,3,4,5} U {12,13},
51 ={6,7,8} U {9,10} U {11} U {14,15}.

The new master/slave group is the union of the original mas-
ter/slave group given in (a).

VII. CONCLUSIONS

This paper has presented a mathematical characterization
summarized in (4) for the architectures of arbitrarily connected
synchronization networks 3 in terms of a set of disjoint iso-
lated connecting synchronization networks of size C in (2); N
is the number of network nodes. The isolated connecting sync
networks are further partitioned into the number of a set of a
master and a slave group of nodes. Moreover, it is demonstrated
that there exists at least one closed irreducible subnetwork in
each connecting sync network. It is succinctly demonstrated
how master-slave (MS), mutual synchronous (MUS) and hier-
archical MS/MUS network architectures are related by apply-
ing the definitions and theorems proven in this paper. The au-
thors believe that decomposing and partitioning of an arbitrar-
ily connected sync network into disjoint fundamental building
blocks provides much needed and new insights into problems
associated with architecting synchronization networks and char-
acterizing their performance metrics [11], [12]. Applications
to Personal Communication Networks (PCN) such as DCS-
1800, PCS-1900, Global Systems for Mobile Communications
(GSM), I5-95/CDMA, etc. are forthcoming.

APPENDIX A : GLOSSARY OF NOTATION

Sets:
$h= Arbitrarily connected sync network, % = Uf___L ¥ H
BiND; = 0,3 £ By, Vi ],
#;= Connecting sync network, sh; = M; U 5;;
M;nS,=0,Vjk.
M= the master group of nodes, M; = U;‘;l M;;;
Mz'j N My = (Z)a v (Z7J) 7& (k:’)
M;;=the j** master irreducible subnetwork in 33;.
5= the slave group of nodes, S; = Uf:ﬁ Sijs
Sii N S =0, Y (i,5) # (k,1).
S;;=the j'* slave irreducible subnetwork in ;;
Mi; N Sg =0, Vi, j, k, L

Numbers:

N =the total number of nodes in 33, N = 25:1 N;.

L = the total number of 3; in .

NN; = the total number of nodes in 33;. i

m,; = the tolal number of nodes in M;, m; = Zf‘zl M.
m;; = the total number of nodes in Mj;.

Ky, = the total number of Mj; in 3, Kim = Kim1 + Kima.

Kjm1 = the total number of M;, in 3; which has only one
node.
Kyms = the total number of M,; in ; which has at least two
nodes.
K5 = the total number of S;; in 5;.
Ap = the number of possible sync architectures in an arbi-
trarily connected sync network containing N nodes.
Cy = the number of possible sync architectures in a connec-
ting sync network containing N nodes.

The connecting relations between two nodes i and j:

i — j: one-way connected.

t ++ j: lwo-way connected.

1 = J: one-way accessible. (directions do matter)

i < 7: two-way accessible. (directions do matter)

i ~ j: directly or indirectly connected. (not necessarily
accessible, directions do not matter)

The connecting relations between subnetworks E and F:

£ — F: one-way connected.

E < F': two-way connected.

E = F: one-way accessible. (directions do matter)

E & F': two-way accessible. (directions do matter)

E ~ F: directly or indirectly connected. (not necessarily
accessible, directions do not matter)

APPENDIX B : THE NUMBER OF ARCHITECTURES
IN AN ARBITRARILY CONNECTED SYNC NETWORK

In this appendix, the number of possible network architec-
tures for an arbitrarily connected sync network 3 containing IV
nodes is found. As shown in Theorem lc, 3 is the union of
L isolated connecting sync networks, ie., 3 = L_JL-L:1 B;. As-
sume that there are V; nodes in ;. According to Definition 2,
all nodes are numbered from 1 to /N in an arbilrarily connected
syne network!?. However, from Fig. 1, there is no difference in
naming either one of the two connecting sync networks as s or
$s. Therefore, the problem of counting the number of possible
sync network architectures in 33 is cquivalent fo asking the ques-
tion: How many choices are avajlable for distributing /V distinct
nodes (balls) in L (N > L > 1) indistinguishable connecting
networks (boxes) where each connecting sync network has at
least one node [3], [32], [33] and all distinct nodes in each con-
necting sync networks are directly or indirectly connected. To
find the answer, one needs to: (i) group the number of nodes in
each 3%, (il) remove the repeated choices in (1) since all hoxes
are assumed indistinguishable, and (iii) connect all /V; nodes in
each 33, directly or indirectly for all i=1,2,..L. By performing
these three tasks, one can readily show that

N N!
An = 2N0V-1) AT
; > Y gmw
L=1(¥x | Ni=N,lE<N,ZN)

] [Co, OnyCv
(B-1)

1
vilwals!vn!

12 All nodes are assumed to be distinct. For cxample, a node located in the
United States is different [rom a node located in Taiwan.
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where the symbols Ay, Cy,,v; are defined in (1). The first
summation indicates that by arbitrarily connecting N nodes (as
described in Definition 2), the resulting sync network architec-
tures may contain any number L<N of connecting sync net-
works, i.e., L=1,....N. The second summation indicates that
therc may exist more than one choice for distributing NV distinct
balls into L indistinguishable boxes (N > L > 1). The fiest
bracketed terms in (B-1) indicates that the number of choices
for a fixed L is given by

N\ (N-N\ (N _ N
N, Ny Ny) = NNl Nt

Since all boxes are indistinguishable, the sccond bracketed
terms in (B-1) are applied to resolve the repeated choices in the
first bracketed terms of (B-1). Once a specific partitioning of
the nodes is finished, the number of possible choices for con-
necting network nodes is calculated in the third bracketed terms
ol (B-1).

(B-2)
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