Abstract
In order to estimate a parameter $(\alpha,\beta^r), r\epsilonN$, in a distribution belonging to a location-scale family we usually use best invariant estimator (BIE) and best unbiased estimator (BUE). But in some conditions Ryu (1996) showed that BIE is better than BUE. In this paper we calculate risks of BIE and BUE in a normal and an exponential distribution respectively and calculate a percentage risk improvement exponential distribution respectively and calculate a percentage risk improvement (PRI). We find the sample size n which make no significant differences between BIE and BUE in a normal distribution. And we show that BIE is always significantly better than BUE in an exponential distribution. Also simulation in a normal distribution is given to convince us of our result.