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Monte Carlo Estimation of Multivariate Normal
Probabilities

Man-Suk Oh! and Seung-Whan Kim?

ABSTRACT

A simulation-based approach to estimating the probability of an arbi-
trary region under a multivariate normal distribution is developed. In spe-
cific, the probability is expressed as the ratio of the unrestricted and the
restricted multivariate normal density functions, where the restriction is
given by the region whose probability is of interest. The density function
of the restricted distribution is then estimated by using a sample generated
from the Gibbs sampling algorithm.

Keywords: Gibbs sampler; Nonlinear constraints; Normal orthant probability;
Density estimation.

1. INTRODUCTION

Consider a d-dimensional random vector X = (X7, ..., X) following a multi-
variate normal distribution with mean p and variance 2. A problem that arises
in many statistical application is that of computing the probability of a set

A={X:a<h(X)<b}, (1.1)

where a and b are m-dimensional vectors such that —co < a < b € 00 and h(X)
is a m~dimensional vector of nonconstant functions of X. Obviously, we exclude
the case of a; = —co and b; = oo, where a; and b; are the i-th element of a and
b, respectively.

Except for a very few special cases, analytic expression of the above prob-
ability is not given and numerical estimation is in order. A simple method of
estimating the probability is the Hit-Miss described in Rubinstein (1981), which
generates samples from the multivariate normal distribution and estimate the
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probability by the relative frequency of samples falling in the region A. However,
the Hit-Miss can be very inefficient if the probability is small because most of
the samples are rejected, which is often the case especially in high dimension.
There are more efficient but sophisticated Monte Carlo methods than the simple
Hit-Miss. However, most of them are designed for simple functional forms of h,
such as linear functions of dimension less than or equal to d, see Geweke (1986,
1991), Evans and Swartz (1989), and Genz (1992). In situations where the re-
gion is defined by nonlinear functions or a combination of linear and nonlinear
functions, there is no efficient and general method of estimating the probability.

Recently Markov Chain Monte Carlo method has become a very popular tool
for handling difficult computational problems in statistics because it is easy to
use and has wide range of application. Among the Markov Chain Monte Carlo
methods, the Gibbs sampler (Gelfand and Smith, 1990) is particularly useful
because it may convert a sample generation from a complicated multivariate
distribution to a series of sample generations from simple univariate distributions.
Thus, by using the Gibbs sampler one can easily gencrate samples of normally
distributed random vector which is restricted to the region whose probability is
of interest. Using these samples, we propose a simple and efficient method for
estimating the probability of the region. Section 2 describes the sample generation
and the estimation method in detail. Two illustrative examples are given in
Section 3 and concluding remarks are given in Section 4.

2. THE EMTHOD

2.1. SAMPLE GENERATION

We describe the Gibbs sampling algorithm to generate multivariate normal
samples restricted to the area of interest. We first introduce some notations. Let
N(u,¥) denote the multivariate normal distribution with mean w4 and variance
% and let N*(u,T) denote the same normal distribution but restricted to the
region A, where A is given in (1.1). Let X = (X3,.., X;) and X4 = (X7, .., X4
be random vectors following N(u, %) and N4(y, T), respectively, and let f(x)
and f4(x*) be the density functions of X and XA respectively. Finally, let
f#(-|z$, 7 # ) be the conditional density function of X{ given X £ = 40 # 1,
let fi(-|zj,j # i) be the conditional distribution function of X; given X, =
zj,7 # 1, and let F;(C|z;,7 # i) be the conditional probability of X; € C given
Xj=zjj#1i.

The following theorem gives the conditional distribution of X! given X £, #
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1,9 = 1,..,d, which is necessary for the Gibbs sampling algorithm.

Theorem 2.1. The conditional density function of X/ given X]A = m_;-“,j # 1,
is given by
fAaflef g #4) =
filatlag g # Izl € Ai(af', g # i)/ Pi(Ai(zf,j # i)laft, 5 = 1),
where I is the indicator function and

. . A A
Ai(mfvj 7é Z) = {Xi; (3:1 7-'7mi—1:Xi:$:LA+17 "137&4) S A}

Proof: For simplicity, we will use the notation A; for Ai(xf, j # i). Given
X 5—4 = xf, j # 14, the conditional density function of the i-th element X/ of X4
is given by
fiaflefi #9) o fAt - ag)
% f(zh et I((2h, . od) € 4)
o filaflef, g # )I(z] € A,

Thus,

araya o fiaflat i F)(f € A) Filmilzd,j # D)z € A)
el I 20 = h el s #0ds . BRI 2D

Since f; is the conditional density function of X;, it can be easily seen that
fi(a:,-[a;f, j # 1) is the density function of a univariate normal distribution with
mean o; = p; — ) (15 — :1:3-4)7'1-]-/7'1-1- and variance §; = 7;; !, where 7; is the
(4, §)-th element of %~1, Thus, the conditional distribution of X{* is a univariate
normal distribution with mean «; and variance 3;, but restricted to the region
A;. No matter how complicated the multi-dimensional region A is, the one-
dimensional region A; can be expressed as a union of disjoint intervals, so the
conditional probability of X; € A; can be computed analytically. Therefore,
efficient sample generation from the conditional distribution can be done by the
inverse e¢df method of Devroye (1986) or the mixed integration method of Geweke
(1991).

Since the Gibbs sampler iteratively generates samples from conditional distri-
butions, sample generation from N*(y, %) distribution can be done easily. In ad-
dition, because there is no waste of random samples once convergence is achieved
in the Gibbs sampling algorithm, the algorithm may be efficiently applied even
for the region with a very small probability.
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2.2. ESTIMATION OF THE PROBABILITY

With a sample from the region of interest, we propose a method of estimating
the probability of the region. We first give a simple lemma which relates the
probability with the density function of N4(u, ).

Lemma 2.1. For an arbitrary point x* € A,

<A
PXecA)= }[Ai(x_A))'
Proof: Straightforward from f4(x4) = f(x4)I(x4 € A)/P(X € A). O

Since f is known, the problem of estimating the probability becomes to es-
timating the density function f4 at one point. In general, estimation of density
function is not easier than estimation of probability. In this situation, however,
efficient sample generation from the distribution corresponding to the desired
density function can be done. Moreover, in the conditional distribution of X2,
the restricted region A; can be expressed as a union of disjoint intervals and
hence the probability of A; can be computed. This makes the conditional density
function of each element X/ of X# be given in closed form expression.

Oh (1999) proposed a simple method for estimating posterior density func-
tions in Bayesian analysis, when a posterior sample is given and the conditional
posterior density functions are given in closed forms. Clearly, the distribution
N4(u, ) and the density function f4 meets the conditions for Oh (1999)’s
method, if we consider N4 (u, X) as a posterior distribution and f4 as the corre-
sponding posterior density function. Thus, we can apply Oh (1999)’s method to
estimate f4(x4) and then estimate the probability. The following theorem gives
the resulting estimate.

Theorem 2.2. For a given point x4 € A, define
P(X € 4) = f(x*)/FA(x*),
where
1 n
At = =3 g6t XA (2.1)
k=1

g(xA XA) - fi(mfIX(;"_1)a$'_4(¢))I($iA € Ai(X(’;l_l),mf(i))
1 - =1 3
Pi(Az‘(Xé‘_l)a mé(i))lxé_l)axé(i))
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Xy = (X0 XA, 24 = (@8, ed), and {(Xf = (X{, ., X4), k =
1,..,n} is a sample of XA obtained from the Gibbs sampling algorithm. Under
some regularity conditions, P(X € A) — P(X € A) almost surely as the sample
size n gets large.

Proof: Considering N*4(u,%) as a posterior distribution and f# as the corre-
sponding posterior density function, from Oh (1999),

A = BIOL fA =8 Xy, w20,

where the expectation is taken with respect to X“*. Plugging the conditional
density function given in Theorem 2.1 into the above equation yields

FAY = Blg(x*, X4,

Taking the sample average of g(x#, X4) gives the estimate of fA(x4) and the
convergence result follows from Tierney (1994). O

From the delta method, one can estimate the variance of P(X ¢ A) by

P(XcA

2
Var(P(X € A)) = ( i A))) Var(f*(x4)).

Now, V?zr(fA(xA)) is given by
- 1,13 4 .
Var(FA4) = (- Yl 6e, XE) - [FAAP),
i=1
if independent samples are used. Sometimes, one obtains autocorrelated samples
from one long-run of the Gibbs sampling algorithm. In such a case the variance
estimate is given by

. g
Var(fA(x) = 2[00+ 32 2(1 - /(1 + )}, (22)

s=1

where
1

n—3s

Q= —— 3" gt Xt Xy ,) ~ [FA A,
k=1

and ¢ is the lag size where the autocorrelation of {g(x*, X£)} is negligible. See
Chib (1995) and Oh (1999) for more details on the variance estimate.
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3. EXAMPLES

3.1. EXAMPLE 1

For a simple example, we consider the normal orthant probability P(X > 0)
with g = 0. The normal orthant probability is required in various statistical
area, for instance in measuring association of two categorical data. In general,
however, the normal orthant probability is unknown and is very small in high
dimension.

For illustrative purposes, we consider the case of ;; = 1 for ¢ = 1,..,d and
gij = 0.5 for all i # j, where oy; is the (¢, j)-th element of covariance matrix X.
In this case, the true orthant probability is known to be 0.5¢ (Johnson and Kotz,
1972). But to see the performance of the proposed method, we estimated the
probability and its standard error for various sample size n and dimension d.

As the point x4 at which the density functions arc to be evaluated, we se-
lected x4 = 0 which has the largest density function value among the points in
the region A. In sample generation from the Gibbs sampler we used the warm-up
size 100 which seemed to be large enough in all cases considered here from a
rough convergence check of the Gibbs sampler. After the warm-up, autocorre-
lated samples were taken from successive cycles of the Gibbs sampler, hence the
variance was estimated from (2.2).

All the computations in this paper were done by using the Fortran program-
ming language Power Station 4.0 in personal computer with a Pentium processor.
Uniform random numbers are generated from the IMSL routine RNUN and stan-
dard normal edf’s were computed by using the IMSL routine ANORDF.

We first illustrated the estimation results with sample size 10 000 in Table 3.1
(a) and then results with sample size 100 000 in Table 3.1(b). In the two tables,
columns 2 and 3 shows the estimate and the standard error, and columns 4 and 5
shows the lower and upper limits of a 95% confidence interval for the probability.
The true probability is given in column 6 and computing time in column 7. To see
the results more clearly we plotted the estimates, the confidence intervals, and the
true probabilities for each dimension in Figure 3.1 (a) and (b). From the tables
and figures, it is clear that the estimate from the proposed method converges to
the true probability very quickly. With sample size 10 000, the estimate gets very
close to the true value. Since the proposed method generates samples only from
the region of interest, standard error of the estimate and computing time do not
increase dramatically as the dimension increases, unlike most other numerical
estimation methods. With sample size 100 000 the estimates are almost equal to
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the true values and the confidence intervals are very narrow, but the computing
time seems to be still within acceptable range.

Table 3.1: Estimates of the normal orthant probability.

(a) n = 10,000
dimension | estimate S.E. lower limit | upper limit | true value
2 0.33230 | 0.00117 | 0.32997 0.33467 0.33333
5 0.16305 | 0.00207 | 0.15890 0.16721 0.16667
10 0.08946 | 0.00312 | 0.08320 0.09571 0.09091
15 0.06169 | 0.00443 | 0.05281 0.07056 0.06250
20 0.03766 | 0.00612 | 0.02540 0.04991 0.04762
25 0.03291 | 0.00826 | 0.01639 0.04943 0.03846

(b) n = 100,000

dimension | estimate | S.E. | lower limit | upper limit | true value
2 0.33316 | 0.00036 | 0.33242 0.33389 0.33333
5 0.16528 | 0.00070 | 0.16386 0.16669 0.16667
10 0.09165 | 0.00101 | 0.08962 0.09360 0.09091
15 0.06147 | 0.00141 | 0.05864 0.06430 0.06250
20 0.05275 | 0.00212 | 0.04850 0.05701 0.04762
25 0.04084 | 0.00349 | 0.03385 0.04783 0.03846
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Figure 3.1: The Normal Orthant Probability Estimates (dots: estimates, dotted
lines: 95% confidence interval, triangle: true value).



MC Estimation of Normal Probabilities 451

3.2. EXAMPLE 2

When y follows a d-dimensional normal distribution with unknown mean
vector # and known variance ¥, an interesting question is whether Hy : @ =0 or
H, : 6 > 0. In a Bayes test of the above hypotheses, a proper prior density p(6)
is assigned to the area 6 > 0 and decision is often made depending on the value
of the Bayes factor B which is given by

g _1016=0
[ F(¥18)p(6)d6’

where f(y|0) is the density function of data y given 6.

Since the Bayes factor is sensitive to the choice of the prior p, it is often
interesting to find the lower bound of the Bayes factor over some reasonable
classes of density functions for p. One of the reasonable classes for p would be
the class of unimodal symmetric density functions with mode at 0. Oh (1998)
shows that the lower bound of B over the above class is given by

ezp[—5y' L1y

B= ,
supy Wlﬂ Jos0,6rm-16<k2 ezpl—3(0 — y)'E~1(6 — y)]do

where V (k) is the volume of the region A = {6;6 > 0, /2719 < k?}.

The integral in the denominator can not obtained analytically. But it can be
expressed as (27)%2|%|'/2 times P(0 € A), where 6 follows N(y, L) distribution.
Thus, the problem becomes estimation of the probability P(6 € A). Note that in
this example 6 plays the same role as X in Section 2.

If we denote the (i, j)-th element of 7! by 7;; and let 84 = (64, .., 64) follow
NA(y, %), the normal distribution restricted to the region A, then the conditional
distribution of 6 is restricted normal distribution N, 5;)I(0 < p; < ¢;), where

a; = Y; — Yj;léz( yJ)TZJ/TZ’H Bi = 7'”, , and

c; = -7_—-\/11;2 - Z TjkaGA (Z sz /Tu ETijef/Tii-
it
J

j ki i i

Thus,
fA(H;“I A j i) = phz((@A az)/'\/_) 0< 9A < &)

(Cz - az)/\/_z) - ( az/\/_z)
where ¢ and ® are respectively the standard normal density and distribution
functions. Note that the region A = {6;6 > 0, ¢'S~18 < k?} is converted to
a fixed interval (0,¢;) in the conditional distribution of 85! so that the sample

generation is easy and the conditional density function is given in closed form.
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For simple illustration, we choose k = 2, 3 = I;, the d-dimensional identity
matrix, and y = (t/+/d)1 for some constant ¢, where 1 is the vector of all elements
1. Table 3.2 presents estimates of P(# € A) and their standard errors for some
selected values of d and . In this example, we selected the point which is closest

to the origin as x

in the region A.

A

Table 3.2: Estimates of the probability in Example 2

since it has the largest density function value among the points

dimension t | estimate SE time || estimate sample size | time(sec)
(sample size) (sec) || (Hit-Miss) | (Hit-Miss) | (Hit-Miss)
(10000} 0.5 | 3.50E-01 | 6.98E-04 0 3.48E-01 467703 0
1 3.79E-01 | 7.42E-04 0 3.79E-01 4271356 0
2 3.76E-01 | 1.03E-03 0 3.7TTE-01 222116 0
3 3.43E-01 | 1.87E-03 0 3.45E-01 64389 1
4 2.97E-01 | 3.36E-03 0 2.94E-01 18471 0
5(20000) 0.5 | 2.78E-02 | 3.01E-04 8 2.75E-02 297636 7
1 3.25E-02 | 2.72E-04 7 3.24E-02 425105 10
2 3.42E-02 | 2.56E-04 7 3.50E-02 502579 11
3 3.33E-02 | 4.05E-04 7 3.33E-02 196026 4
4 2.94E-02 | 8.35E-04 8 2.89E-02 40892 1
10(30000) 0.5 | 1.08E-04 | 1.28E-05 23 1.03E-04 662026 28
1 1.31E-04 | 7.04E-06 23 1.50E-04 2646509 N 114
2 1.48E-04 | 3.83E-06 23 1.54E-04 10039766 434
3 1.45E-04 | 3.87E-06 22 1.46E-04 9725135 421
4 1.32E-04 | 7.43E-06 21 1.30E-04 2381505 103
15(40000) 0.5 | 2.08E-07 | 5.79E-08 47 ? 62004876 3844
1 2.21E-07 | 3.62E-08 47 ? 168505648 10447
2 2,09E-07 | 1.34E-08 47 ? 1165140224 72238
3 2.08E-07 | 9.86E-09 45 ? 2135097472 136646
4 1.82E-07 | 1.74E-08 43 ? 599941888 37196
20(50000) 0.5 | 4.35E-10 | 9.18E-11 31 ? 51528884224 4328426
1 1.63E-10 | 4.30E-11 81 ? 88208449536 7409509
2 1.75E-10 | 3.22E-11 80 ? 1.69E+11 14190875
3 1.44E-10 | 1.31E-11 79 ? 8.44E+11 70922556
4 | 1.35E-10 | 2.57E-11 73 7 2.03E+11 17093970
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To see the efficiency of the proposed method, we also consider estimates from
the Hit-Miss algorithm which seems to be the only alternative method for com-
puting the probability in this example. From the table, it is clearly seen that the
estimate gets close to 0 very fast as the dimension increases. So it is meaning-
less to compare the standard errors across dimensions and one may require small
standard errors for small estimates. Thus, we increased the sample size by 10
000 as the dimension increases by 5 except for dimension 2, and it seemed to give
a reasonable size of the standard error. Next, to compare the proposed method
with the Hit-Miss, we ran the Hit-Miss until it achieved the same standard error
in each case and observed the required sample size and computing time. The
Hit-Miss results are given in the last two columns of Table 3.2. Obviously, the
computing time for the Hit-Miss blows up so that the Hit-Miss becomes infeasible,
as dimension gets larger than 10. The reason is that the probability is very small
in high dimension, yielding too high rejection rate in the Hit-Miss algorithm. In
contrast, the computing time for the proposed method is within some reasonable
range even in high dimension. Thus, even repeated runs of the proposed method
is possible which is often required in simulation study.

4, CONCLUDING REMARKS

We have proposed a simulation-based method for estimating the probability
of an arbitrary region which may be defined by complicated nonlinear constraints,
under multivariate normal distributions. The method generates samples from the
multivariate normal distribution restricted to the region whose probability is of
interest by using the Gibbs sampling algorithm. With the sample, the density
function of the restricted normal distribution is estimated by the sample average
of an appropriate function, by using Oh (1999)’s method. Then the probability is
estimated by the ratio of density functions of the unrestricted and the restricted
normal distributions, evaluated at one point.

The method has some great features. First, the method is very general in that
it can handle any form of constraint in A, whereas most analytic or numerical ap-
proximation methods developed so far require some specific forms of constraints.
Second, it is efficient even when the probability is very small since samples are
generated only from the region of interest. Moreover, the samples can be used
not only for estimation of the probability but also for other statistical inference.
Third, it is very easy to use. All that actually required for the method are sam-
ple generations from univariate restricted normal distributions and computations
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of the corresponding density functions, which can be done easily with existing
statistical software.

The point x* in the estimate (2.1) can be chosen arbitrarily. But in practical
application of the method, the accuracy of the estimate is sensitive to the choice
of x4. Unfortunately, there is no obvious rule for optimal x4. From experience,
however, we suggest a few guidelines for selection of x4. First, a point x* from
a tail area of x* is not good. It seems to highly underestimate the probability
and its variance. Second, a point x4 near the mode of f4 seems to be good.
Thus, when the mode is known we suggest to choose the mode as x*. When
it is difficult to locate the mode, which is often the case in high dimensions, we
suggest to try several different x“4s at which f is relatively high, and take the
best estimate or the average of estimates as a final result.

Finally, further research interest would be computation of the probability of
an arbitrary region under a distribution whose density function is known only up
to a functional form.
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