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Estimating Methods on Exponential Regression
Models with Censored Data’

Il-Do Ha; Youngjo Lee? and Jae-Kee Song?

ABSTRACT

We consider a large class of exponential regression models with censored
data and propose two modified Fisher scoring methods with corresponding
algorithms. These proposed methods improve the Newton-Raphson method
in estimating the model parameters. The simulated and real examples are
illustrated in aspect of convergence.

Keywords: Censoring mechanism; Fisher scoring method; Genearized linear mod-
els; Link function; Quasi-likelihood.

1. INTRODUCTION

To the analysis of censored survival data on patients suffering from chronic
disease (e.g., cancer), many authors previously have been treated the exponential
regression models that a chosen function for the expected survival time of each
patient is linearly related to covariates of a patient.

In fact, the function corresponds to a link function in generalized linear models
(GLMs, Nelder and Wedderburn, 1972). For these exponential models, the most
useful link is log, which has been discussed by Glasser (1967), Prentice (1973) and
others. Other frequently used link is identity, e.g., Zippen and Armitage(1966)
and Krall et al. (1975), and reciprocal link, e.g., Greenberg et al. (1974).

To analyze such data, we need to solve the likelihood equations of these ex-
ponential models. But, since the equations are nonlinear functions for the vector
of the model parameters, these can be solved by iterative methods, such as the
Newton-Raphson (N-R) method and the Fisher scoring (FS) method, etc. When
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the data may be censored, it does not be possible to figure out the Fisher in-
formation needed in the FS method, and so the likelihood equations are usually
solved by the N-R method based on the observed information.

However, the observed information usually gives more complicated form.
Moreover, the observed information often may not be positive definite at some
points in the admissible regression parameter space for these exponential mod-
els. Therefore, the N-R method may not be converged if it has not the initial
estimates near to optimal points of the regression parameters.

The above convergence problem in the implementation of the N-R method can
be circumvented by using the modified F'S method that the observed information
is replaced by an alternative of the Fisher information.

The main purpose of this paper is to consider a large class of exponential re-
gression models with censored data and then to propose two modified FS methods
estimating the model parameters, and also to provide the corresponding algo-
rithms.

This paper is organized as follows. In Section 2, the models considered are
defined and the likelihood equations for the models are derived, and in Section
3 and Section 4, two modified F'S methods are proposed and the corresponding
algorithms including an useful initial estimate are also provided. In Section 5,
for the models with three useful links (log, reciprocal and identity), two proposed
FS methods and the N-R method are summarized and compared. In Section 6,
our results are illustrated with the simulated and real examples. Finally, some
concluding remarks are given in Section 7.

2. MODEL STRUCTURES AND LIKELITHOOD EQUATIONS

Let T; be the survival time on study for the 7th ({ = 1,2, --,n) individual
(patient or subject) and C; be the random censoring time associated with T}.
However T;’s may not all be observable due to the censoring mechanism, i.e., the
observable quantities are

Y;: = min(ﬂyoi): 51: = I(n S Ci)) :L‘f = (x‘ilum’ﬂ) Ut )‘T'L'p))

where I(-) is the indicator function and z! is the 1 x p vector of covariates asso-
ciated with the ¢th individual.

Assume that T; (i = 1,2,---,n) are n independent survival times such that
each T; follows the exponential distribution with the mean p; = E(T;)(> 0), which
is dependent on the covariates z¢ of the ith individual and that C; (i = 1,2,---,n)
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are n independent censoring times with a continuous distribution. Also assume
that T; and C; (i =1,2,--+,n) are independent.
Under the assumptlons, we consider here the exponential regression model

nizg(,ui) :93:,8 (i:172:"'7n)) (21)

where 7; and g(-) are linear predictor and link function in the GLMs, respectively,
and (3 is the p x 1 vector of unknown model parameters.

In addition, the model (2.1) can be viewed as a location-scale model for
log(T3) i =1,2,--+,n), ie,

]'Og(T'z) = IOg/_LZ + € (Z = 1327'” ,TL),

where p; = g !(zf) and the ¢;’s follow independent standard extreme value
distribution, see Lawless (1982, pp. 283).

Based on the observations (y;, d;, zt) for i = 1,2, ,n, the log-likelihood of § in
the model (2.1) is

where
0 = £(B; i, 6:,3t) = —5; log(u:) ~ z

2
To obtain the likelihood equations for 5, we require an expression of 9¢;/93; for
j=1,2,.--,p. Now, by the chain rule, :

ob;  0&; Ou; On;

= . 2.2
85; ~ O On: 05, 22
By combining the above equation for ¢4; with (2.1) and (2.2), we have
0¢; (y‘ 61.11'2)371_7 .
= ) .7:1727"'ap5 2.3
9B; % (9 (#z)) 23)
where ¢'(1;) = 07;/0u;. Then the likelihood equations for 3 are given by
n ._,5,.“.)37., 1
2! — (yz i1 ) Tig =0, j=1,2,--,p, (2_4)
0= LT Gy

where £;'(5) is denoted by Y 7., 8¢;/80;. Since the likelihood equations (2.4) are
functions of the §8;’s only through the mean function p;’s in nonlinear fashion, the
maximum likelihood (ML) estimator 3 of 3 is obtained by iterative methods, such
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as the N-R method and the FS method, etc. The p-dimensional score function
can be written as
£(8) = X*'Wu, (2.5)

where £'(3) is the p x 1 vector with the jth element £;(3), X is the n x p model
matrix whose ith row vector is ¢, W is the n x n diagonal weight matrix with the
ith element w; = {u2[g'(1:)]?} ! and u is the n x 1 vector with the ith element

u; = (y; — 6ips) g (143)-

3. FISHER SCORING-I METHOD

To solve the likelihood equations (2.4) via the N-R method, we need the
negative second derivatives —£"(0) of £(3). Now, from (2.2) we have

i N Y 0 Y
dB;008,  Ou? “0B; OB Oui’ 0pB;00k”
Thus,
_e_lylk(/@) =Z$’L]w:$zk7 .73k= 1)2s7p ’ (31)
=1
where —£7;(3) is denoted by 3=, ;T'%%: and
. 2y; g" ()
w; = —wi{(0; — ——) = (yi — s . 3.2
{( " ) = (yi — dips) 7 (a) } (3.2)

In matrix notation, the equations (3.1) can be written as
—"(B) = X*'W*X, (3.3)

where —£"() is the p x p matrix with the (j, k)th element —£;;"(3) and W* is
the n x n diagonal weight matrix with the ith element w;.

Here, (3.3) is positive definite if X has full column rank and W* has positive
elements on the main diagonal. Although X has full column rank the diagonal
elements w}’s in (3.2) are not easy to satisfy positive for all ¢, because they
excessively depend on the data, the parameters and the link function. Further,
since the observed information matrix in (3.3) may not be positive definite at
some points in the admissible space for § and the expected value of Y; in (3.3)
can’t be simply calculated due to censoring mechanism, both the N-R method
and the FS method may not be applied directly.

As an alternative, we propose the modified F'S method using an estimator of
the Fisher information (hereafter we call it FS-I1 method) as follows:
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Proposition 3.1. Under the model (2.1) and regular conditions, the pxp Fisher
information matriz I(B) = (I;x(8)) is reduced to

Li(B) = () zijwizs), 5k=1,2,---,p, (3.4)
€D

where D is the indez set of individuals for uncesored observations.

Proof: Under the model (2.1) and regular conditions, we know that

E(Séi):O, i=1,2,---,p. (3.5)
Therefore, from (2.3) and (3.5) we have
E(Y:) = wE (%) (i=1,2,---,n). (3.6)
Also, from (3.2) and (3.6) we obtain that
B(w}) = wiB(G) (i=1,2,,n). (3.7)
Combining the expectation of (3.1) with (3.7) completes the proof. O

Since E(w]) = w; in the case of uncensoring, the Fisher information (3.4)
can be easily calculated, i.e., [;x(8) = Y.iny Tijwizik, 5,k =1,2,---,p. However
when there is censoring, the Fisher information is not easily computed due to
random sum in (3.4).

Therefore we propose a reasonable estimator of I;,(4) as follows:

Lin(B) = Y mijizie, Gk =1,2,---,p, (3.8)
€D
where 1;(= w;(8)) for i € D is the value of the w;(= w;(8)) for i € D evaluated
at § = 3. In matrix notation, (3.8) can be written as

I(B) = xb,WpXp, (3.9)

where 1(8) is the p X p matrix with the (j, k)th element fjk([i’), Xpisther xp
matrix with ¢th row vector z¢ for ¢ € D, r is the number of uncensoring and
Wp is the r x r diagonal weight mairix with the ith element ; for 4 € D. Note
that (3.9) is positive definite if Xp has full column rank and Wp has positive
elements on the main diagonal. Here the diagonal elements of Wp are always
positive, except trivial case (e.g., 5 = 0).

We here provide the following FS-1 algorithm for obtaining the ML estimator
E via the proposed FS-1 method:
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Step 0 : Obtain an initial estimate 8 of 3.

Step 1 : Calculate the following with a chosen link function g(-)

m =g M atp®) (=12, ).

Step 2 : Calculate £(3®) and [(3©),
where #(3(0) is the score vector £(8) in (2.5) and [(8®) is the estimate
I(B) of the Fisher information in (3.9), evaluated at 5 = 8%, respectively.

Step 3 : Calculate the next approximation (V) to 3, as

B = 5O+ (F(BO)] (5O,

Step 4 : Repeat Step 1 to Step 3 by replacing 5(9) with B until convergence is
hopefully achieved. One stop if 3(9) and B are close together and ¢ (1)
is close to zero.

For obtaining an initial estimate 3(®) of the FS-I algorithm, we use the initial
estimate of 3 in the GLMs setting based on the data with regarding censored one
as uncensored, see Nelder and Wedderburn (1972). That is,

30 = (XtW(O)X)_lXtW(O)z(O), (3.10)

where W(0 is the n x n diagonal matrix W with the ith element w; in (2.5)
evaluated at p; = y; and z(® is the n x 1 adjusted dependent vector with the
ith element z§0)(= g(ui)) evaluated at p; = y;. Note that the N-R method uses
—2"(B©) instead of (B©) in the Step 3.

From the asymtotic normality of ﬁ under regular conditions and (3.9), we can
obtain the estimated p x p asymtotic covariance matrix of 3, i.e.,

Cov(B) = (B~ = (XbWpXp] Y, (3.11)

and so the standard errors (SEs) of Bj (7 =1,2,---,p) are given by the square
root of the (7, 7)th diagonal element of (3.11).
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4. FISHER SCORING-II METHOD

The F5-I method proposed in Section 3 uses uncensored observations only in
estimating the Fisher information I;;(5). Thus the FS-I method may be improved
by using full observations.

We consider the pseudo random variables
Y =Yidi+ BT Ti > V) (1~ 6) (i=1,2--,n), (41)
where T; and Y; are survival time and observed time, respectively. Then
EY ) =p; (1=1,2,---,n), (4.2)

where p; = E(T;). Note that the expectation identity (4.2) that provides validity
for estimation in the linear models with censored data was shown by Buckley and
James (1979).

Since T; has the exponential distribution with mean p; for ¢ = 1,2,--+,n
(4.1) becomes

bl

We then propose the modified F'S method using ¥;*’s and Wedderburn’s (1974)
quasi-likelihood (QL) approach (hereafter we call it FS-IT method) as follows:

Proposition 4.1. Suppose that under the model (2.1), the variance structure
of Y;* is specified by Var(Y}*) = du?, where u; = E(Y;*) and ¢ is o dispersion

parameter.
Then
(a) the likelihood equations (2.4) is reduced to the form of the QL equations
n *
/ (v — i)z, 1 :
5(P) ; dus (9’(.“1') ’

where q;(B8) is denoted by 0q(B)/0B; and q(B) by the quasi-log-likelihood of 3
based on yIv?/S: U 7y1).;.:

(b) the px p quasi-Fisher information (or working Fisher information) matriz
18 given by

F(B) = (X'WX)/4, (4.5)

where F(B) is denoted by Cov(¢'(8)) and ¢'(B) is the p x 1 vector with the jth
element ¢;(3).
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Proof: Let C be the index set of individuals for censored observations. Since
the likelihood equations (2.4) can be rewritten as

B i = “’)m”( YU () =0, j=1,2,---,p, (46
b) = zEZD I (143) ,Ezéu, g(uz) o (4.6)

from (4.3) we have

ef,-(m:;( ”f“)“"”( )

)=0, 7=12,- (4.7)

From the variance structure, the equations (4.7) is of the form of the QL equations
based on the model (2.1) and the independent Y;*’s with the first two moments

E(Y}) = pi, Var(¥;*) = ¢ul.

This proves the part (a).
To prove the part (b), rewrite the quasi-score function as matrix notation,
ie.,
¢'(6) = (X'Wu)/¢, (4.8)
where u* is the n x 1 vector with the ith element u} = (y} — u;)g’(1;). By taking
the covariance of ¢'(6) with E(gj(8)) = 0, independency of ¥;*’s and the variance
structure, the proof of the part (b) is completed. O

For the true value of 8 in the model (2.1), the QL’s form (4.4) is equivalent
to the likelihood equations (2.4). Thus the solutions, say 3*, of (4.4) become the
ML estimates of 8.

In fact, it is difficult to calculate the variance of ¥;* in (4.3) due to censoring
mechanism. However, Var(Y;*) = ¢u? in Proposition 4.1 is used as a working
variance, even if it may be different from the true variance of Y;*. Also, since
E(g;(8)) = 0 (j = 1,2,-+-,p) as long as E(Y;") = p; under the model (2.1),
the ML estimator 3* will be consistent and robust against a misspecification of
variance of Y;*, see Liang and Zeger (1986), McCullagh and Nelder (1989, Sec.
9).

On the other hand, we can see that (4.5) is positive definite, because the
diagonal elements of W are always positive except trivial case (e.g., 8 = 0) and
also it is always possible to select the columns of X to have full column rank.

We now provide the following FS-II algorithm for obtaining the ML estimator
B* via the proposed FS-IT method:
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Step 0 : Use (3.10) as an initial estimate 5+ of g.

Step 1 : Calculate the following with a chosen link function g(-)
. (0 - - .
w =g @B ) (i=1,2,-,m),

and then calculate for ¢ € C

50 =+
Step 2 : Calculate ¢'(3*9) and F(5®),
where ¢'(3*(%)) is the quasi-score vector ¢'(8) in (4.8) and F(G*(®) is the
quasi-Fisher information F(3) in (4.5), evaluated at § = B*(®) | respectively.

Step 3 : Calculate the next approximation 5 to B, as

0 = O 1 [F(FO) g (3O,

1e.,
AW = (xtWOx) T Xt (050,

where W(© and 29 are the W in (2.5) and the n x 1 adjusted depen-
dent vector with the ith element z*(= g(u;) + u}), evaluated at 8 = 3*©,
respectively.

Step 4 : Repeat Step 1 to Step 3 by replacing 5 with G*() until convergence
is hopefully achieved. One stop if G*® and B*M) are close together and
¢(6*W) is close to zero.

From the above Step 3, we can see that the ML estimator B* is not affected
by the value of the dispersion parameter ¢ and the FS-II algorithm is similar
to the iterative weighted least squares (IWLS) to fit the GLMs in the case of
uncensoring. Note that the SEs of B}‘-"s can be obtained from the estimator (3.9)
of Fisher information (or the observed information in (3.3) ).

5. SPECIAL LINKS

In this section, we briefiy will compare with three methods (N-R, FS-I and
FS-II) estimating the parameters in the model (2.1) with three useful links, such
as log link (n; = log(us)), identity link (m; = u;) and reciprocal link (7; = 1/p;).



204 II-Do Ha, Youngjo Lee and Jae-Kee Song

For the model (2.1), the requirement y; > 0 for all ¢ have to satisfy. That is,
the admissible space B for £ is given by

B={B| ui=g "(zip) >0, Vi}.
Thus, in the log link the admissible space for 3 has not restrictions on £, i.e.,
Bl={f] —oo < zif <00, Vi},
whereas in the reciprocal and identity link the space has restrictions on g, i.e.,
B2={B| zif >0, Vi}.

Frequently there is no physical reason to choose one of the links, and this choice
may be checked via the model checking based on residual analysis. However, in
estimating the model (2.1) with these restrictions, the N-R method sometimes
leads to numerical or statistical problems, e.g., Mantel and Myers (1971).

The initial estimate (3.10) can be used as common that of three methods.
Moreover, it can be easily derived from not only the FS-I and FS-II iterations
but also the N-R iterations, by regarding censored data as uncensored and using
the data y as the initial estimate of . For three links, we can obtain the initial
estimate, the observed information, the estimator of the Fisher information and
the observed quasi-Fisher information, from (3.10),(3.3),(3.9) and (4.5), respec-
tively. These will play an important role of finding the convergent solution of 3
in three methods, and also will contribute to the convergences and their rates.
The results obtained are summarized by Table 5.1.

Table 5.1 illustrates the followings: (i) the implementation of two proposed
methods (FS-I and FS-1I) are easier and simpler than that of the N-R method,
particularly in the identity link; (ii) as an alternative of the Fisher information,
the FS-I method is based on only uncensored observations, but the F'S-II method
full observations; (iii) in the case of the reciprocal link, the N-R and the FS-I
methods give the same results.

6. EXAMPLES

6.1. Simulated Examples

In order to compare the proposed FS-1 and FS-II methods with the N-R
method in aspect of convergence, we consider the model (2.1) with p = 2 and
identity link, i.e.

pi = Po+ Pz (i =1,2,---,n), (6.1)
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Table 5.1: Comparison on convergences of N-R, FS-I and FS-II methods for each
link.

link BO = (XtwOX)™! | —g"(f) = XtW*X | [(f)= XLWpXp | F(B*) = XtWX/$

- Xtw0,0 (N-R method) (FS-T method) (FS-II method)
log wo =i, W* = diag(p] y:) Wp =1} W =1}
zgo) = log(y;) fori=1,2,---,n
fori=1,2,.--,n
reciprocal W) = diag(y?), W* = diag(u?é;) Wp = diag(u?) W = diag(p?)
z§0)=1/y,~ fori=1,2,---,n fori € D fori=1,2,---,n
fori=1,2,---,n

identity w0 = dz'a,g(yi_z), W* = diag(—,ui_zﬁi Wp = diag(;.l,i_Q) W= diag(ui_z)
7 =y, +2u7>ys) fori e D fori=1,2,---,m
fori=1,2,---,n fori=1,2,---,n

t: In(I.) denotes n x n(r x r) identity matrix.

where the T;’s are independent exponential survival times with the mean u;. For
simplicity the model parameters are set to Gy = 5, = 1, and the fixed covariates
and the sample size n are set to the following two cases:

Case 1) z; = i/n, n = 250.

Case 2) z; = 0.1 x i, n = 200.

Since the survival times are subjected to be censored to the right, we set the
censoring times C;’s which are independent of T;’s to be distributed as an uni-
form distribution U(0, );) with parameter A\; = u;/CR. Here CR is the nominal
censoring rate, and set to 25% [20%)] for Case 1 [Case 2], respectively.

For generations of random variates and estimation of the model parameters,
IMSL package and SAS/IML are used, respectively. For three methods the same
estimate is used as an initial value 3(®. That is, in identity link we use the
initial estimate (3.10); also see Table 5.1. As the convergence criterion, we use
the maximum relative changes (upper bound 1073} of the previous and current
estimates for .

Example 6.1. For Case 1, the actural CR was 24%. The results are summa-
rized in Table 6.1; the FS-I, the FS-II, and the N-R methods converge after the
3th, the 7th, and the 14th iteration, respectively. Thus two FS-T and FS-IT meth-
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ods achieve more rapid convergence than the N-R method. Note that the final
estimates of the model parameters are obtained as (1.01,1.13) and these seems
to have good agreement with the imposed population values Gy = 51 = 1.

Table 6.1: Comparision of N-R method and FS-I, II methods in Case 1.
N-R FS-I FS-1I

Iteration
Bo Jiil Bo 51 Bo B
initial 0.022%)  0.012

1 0.034 0.019 1.026 1.087 0.833 0.720

2 0.050 0.028 1.008 1.126 0.981 0.994
3 0.075 0.042 1.007 1.129 1.004 1.087
4 0.110 0.063 unchanged 1.007  1.116
5 0.162 0.094 1.007 1.126
6 0.237 0.139 1.007 1.128
7 0.400 0.206 1.007  1.129
8 0.476  0.303 unchanged
9 0.642 0.441
10 0.817 0.626
11 0.951 0.848
12 1.005 1.043
13 1.008 1.123
14 1,007 1.130
15 unchanged
SE 0.181 0394 0175 0.379 0.175 0.379

a): represents that the same initial estimate is used in N-R , F5-I and II.

Example 6.2. For Case 2, the actural CR was 15%. Some interesting patterns
emerge when the simulated censored data are performed by three methods. Ac-
cording to Table 6.2, the FS-I and the FS-II methods converge, but the N-R
method does not converge with the initial estimate (3.10); if we use the one-step
iteration estimate of FS-T as a new N-R starting point, the N-R method converges,
but it takes two iterations longer than the FS-I.

Additionally, from Example 6.1 and Example 6.2 we can see that all three meth-
ods provide nearly the same SEs; the SEs in the FS-II were obtained from (3.9).
6.2. Real Examples

We here illustrate the performances of the purposed methods with real exam-
ples.

Example 6.3. The survival data on 17 AG positive lukemia patients with the
corresponding log white blood counts (z) were given by Zippin and Armitage
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Table 6.2: Comparision of N-R method and FS-I, II methods in Case 2.

N-R FS1 N-R FS-II
Iteration
Bo 51 Bo B1 Bo b1 Bo 61

initial 0.042%)  -0.003

1 0.063 -0.004 21.755 -0.999 — — 18.358 -0.760
2 0.094 -0.007 9.539 0.179  15.614") -0.606 7.595 0.303
3 0.140 -0.010 1.763  0.801 4,307 0.152 2.830 0.718
4 0.209 -0.015 1.371  0.843 2.768  0.392 1.723  0.812
5 0.311  -0.022 1.387  0.840 1.655 0.640 1.471 0.833
6 0.462 -0.033 1.386  0.840 1.467  0.779 1.409 0.838
7 0.679 -0.048 unchanged 1.393 0.834 1.392  0.840
8 0.983 -0.070 1.386  0.840 1.388  0.840
9 1.366  -0.097 unchanged 1.387  0.840
10 4.580 -0.325 unchanged
11 6.509 -0.461

12 8.955 -0.635

13 11.631 -0.824

39 183188459 -13133933

40 370200566 -26255359

41 740705743 -52532322

42 divergent

SE 0.545 0.104 0.535  0.102 0.545 0.104

a): See Footnote a) in Table 6.1.
b): respresents that the first iteration estimate of F'S-I is used for convergence of N-R. -

(1966). The 17 patients are consisted of 12 deaths and 5 survivors. Then the
model (6.1) is fitted via three methods. The convergence results are appeared in
Table 6.3 and give the similar results to Example 6.1, although the sample size
is too small. The fitted model is as follows: (i) for the N-R, ji = 257.34 — 45.84z1
with corresponding SEs 121.93 and 25.99; (ii) for the FS-I, 4 = 257.34 — 45.84z
with corresponding SEs 128.87 and 27.72; (iii) for the FS-II, i = 257.34 — 45.84x
with corresponding SEs 128.87 and 27.72.

Example 6.4. The survival data for 137 advanced lung cancer patients with
the months (z) from diagnosis to entry into the study, are taken from the data
set discussed by Prentice (1973). Of the 137 patients 9 survivors exist. Then
the model (6.1) is also fitted via three methods. The convergence results are
appeared in Table 6.4 and give the similar results to Example 6.2; in particular
the N-R method does not converge at all but converges slowly when the first
iteration value of the FS-I is used as a new N-R starting point.
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Table 6.3: Comparision of N-R method and FS-I, II methods in Zippin and
Armitage’s(1966) data.

N-R FS-1 FS-11
Iteration . ) ) X i .
Bo b1 Bo B1 Bo 5
initial 42.440%) -8.287

1 62.064 -12.110 220.575 -37.646 170.955 -29.851
2 89,521 -17.457 262.536 -47.044 242708 -43.568
3 126.471 -24.633 256.327 -45.600 253.695 -45.333
4 172.878 -33.601 257.530 -45.879 256.350 -45.712
5 224.314 -48.444  257.307 -45.827 257.053 -45.802
6

7

8

9

268.695 -51.705 257.349 -45.837 257.254 -45.826
289.315 -55.023 257.341 -45.835 257.315 -45.832
283.772 -52.954 257.343 -45.835  257.334 -45.834

270.167 -49.283 unchanged 257.340 -45.835
10 260.653 -46.728 257.342 -45.835
11 257.688 -45.902 unchanged
12 257.349  -45.836
13 257.343 -45.835
14 unchanged
SE 121.933 25.987  128.869 27.720 128.868 27.720

a): See Footnote a) in Table 6.1.
Note: The upper bound of maximum relative changes was used as 10-5,

Table 6.4: Comparision of N-R method and FS-I, II methods in Prentice’s(1973)
data.

N-R FS-I N-R FS-11
Iteration . . ) R )
Bo A Bo 51 Bo 5 Bo i
initial 3.477%)  -0.063
1 5.197 -0.095 152.739 -2.446 —_— — 142.757 -2.272
2 7.753 -0.142 149.739 -2.320 143.450%) -1.946 148.905 -2.284
3 11.535 -0.211 147.763 -2.148 149.439 -2.180 147.108 -2.084
4 17.081  -0.313 143.463 -1.713 152,141 -2.444 142,040 -1.p44
5 25.163 -0.463 138.442 -1.013 145.846 -2.102 138.949 -1.021
6 36.695 -0.678 140.217 -1.113 151,492 -2.390 140.166 -1.112
7 52.733 -0.983 140.201  -1.111 170.470 -3.716 140.199 -1.112
8 74.101 -1.401 140.202 -1.112 214.427 -6.916 unchanged
9 100.674 -1.959 unchanged 122,419 -3.287
21 -401671.9 14348.892 140.215 -1.113
22 -803152.8 28688.483 140.202 -1.112
: : unchanged
34 —3.2892 x 107 117470043
35 —6.5769 x 107 234888188
36 divergent
SE 13.541 0.512 13.488 0.500 13.540 0.512

a): See Footnote a) in Table 6.1,
b): See Footnote b) in Table 6.2.
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7. CONCLUDING REMARKS

We proposed two modified F'S methods (FS-I and FS-II), in order to improve
the N-R method with convergence problem in estimating the model (2.1) with
censored data. For this the several examples were illustrated.

As the results we have observed the following facts: (i) two proposed FS meth-
ods than the N-R method are more easily implemented and appeared in giving
better convergence; (ii) the selected initial estimate provides good convergence
for not only two FS methods but also the N-R method. In addition, from Table
5.1 we can see that the proposed FS methods also work well under the various
mode] (2.1) with three links (identity, log, and reciprocal) and p > 2 (e.g., p = 8).

Finally, the proposed methods may be used in estimating other regression
models with censored data.
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