대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures

  • 윤정방 (한국과학기술원 토목공학과) ;
  • 김상범 (한국과학기술원 토목공학과)
  • 발행 : 1999.09.01

초록

대형구조물의 진동감소를 위한 슬라이딩 모드 퍼지 제어기(Sliding Mode Fuzzy Control SMFC)에 대하여 연구하였다 본 제어기에 사용된 퍼지 추론기의 규칙은 비선형 제어기법의 하나인 슬라이딩 모드 제어기를 기반으로 하여 구성되었다 그결과 제어기의 퍼지성은 제어시스템을 시스템 계수의 불확실성과 구조물에 작용되는 외부하중의 불확실성에 대하여 강인한 성질은 갖게 하였으며 제어 규칙의 비선형성으로 인하여 제어기는 선형제어기에 비하여 보다 효율적인 되었다 복잡한 수학 해석에 기반한 종래의 제어기법에 비하여 퍼지 이론에 기반한 본 제어기법은 제어기의 설계절차가 매우 편리하다는 장점을 갖게 된다. 제안된 제어기법의 검증을 위하여 미국 토목학회 산하 구조제어위원회(ASCE Committee on Structural Control)에서 주도한 벤치마크 문제에 대하여 적용시켜 보았다 본 연구의 제어결과를 다른 연구자들에 의하여 발표된 {{{{ ETA _mixed _2$\infty$ }}, optimal polynomial control neural networks control 슬라이딩 모드 제어의 벤치마크 결과와 비교하였으며 그 결과 제안된 제어기법이 구조물의 진동을 매우 효율적으로 감소시키며 제어기의 설계절차가 쉽고 편리함을 확일 할 수 있었다.

A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

키워드

참고문헌

  1. Journal of the Korean Society of Civil Engineers v.15 no.6 Active control of structural vibration by optimal output feedback controller considering design constraints Koh, H. M.;Park, K. S.;Park, W.
  2. Journal of the Earthquake Engineering Society of Korea v.2 no.4 Vibration control for building structures using active mass driver (Ⅰ):system design Min, K. W.;Kim, D. W.;Lee, S. K.;Hwang, J. S.
  3. International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structure Small-scale experimental system for structural vibration control Joo, S. J.;Hong, S. M.;Min, K. W.;Lee, S. K.
  4. International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures Active control of wind-induced vibration of high-rise tower structures Koh, H. M.;Park, K. S.;Park, W.;Kim, Y. K.;Hwang, J. S.;Kurabayashi, H.
  5. Earthquake Engineering and Structural Dynamics v.27 no.11 Applications of sliding mode control to benchmark problems Wu, J. C.;Yang, J. N.;Agrawal, A. K.
  6. Robust and Optimal Control Zhou, K.;Doyle, J. C.;Glover, K.
  7. Modern Control Theory Brogan, W. L.
  8. Control System Design Friedland, B.
  9. Adaptive Filtering Prediction and Control Goodwin, G. C.;Sin, K. S.
  10. Control System Design Using $MATLAB^??$ Shahian, B.;Hassul, M.
  11. Earthquake Engineering and Structural Dynamics v.26 Sliding mode control of buildings with ATMD Adhikari, R.;Yamaguchi, H.
  12. An Introduction to Fuzzy Control Driankov, D.;Hellendoorn, H.;Reinfrank, M.
  13. Binary Automatic Control Systems Emelyanov, S. V.
  14. Control Systems of Variable Structure Itkis, U.
  15. Nonlinear Systems Khalil, H. K.
  16. Applied Nonlinear Control Slotine, J. J. E.;Li, W.
  17. Sliding Modes in Control Optimization Utkin, V. I.
  18. Journal of Structural Engineering v.109 no.1 Control of tall buildings in along-wind motion Yang, J. N.;Samali, B.
  19. Journal of Engineering Mechanics v.121 no.12 Sliding mode control for nonlinear and hysteretic structures Yang, J. N.;Wu, J. C.;Agrawal, A. K.
  20. Journal of Engineering Mechanics v.121 no.12 Sliding mode control for seismically excited linear structures Yang, J. N.;Wu, J. C.;Agrawal, A. K.
  21. Earthquake Engineering and Structural Dynamics v.26 Sliding mode control with compensator for wind and seismic response control Yang, J. N.;Wu, J. C.;Samali, B.;Agrawal, A. K.
  22. International Journal of Control v.55 no.2 Continuous sliding mode control Zhou, F.;Fisher, D. G.
  23. Adaptive Control Stability, Convergence, and Robustness Sastry, S.;Bodson, M.
  24. Nonlinear Systems Analysis Vidyasagar, M.
  25. Journal of Engineering Mechanics v.122 no.8 Rule-besed control algorithm for active tuned mass damper Abe, M.
  26. Proceedings of the American Control Conference Implementing a fuzzy controller into an active mass damper device Battaini, M.;Casciati, F.;Faravelli, L.
  27. Neural Fuzzy Systems Lin, C. T.;Lee, C. S. G.
  28. Automatica v.30 no.9 Robust control by fuzzy sliding mode Palm, R.
  29. Proceedings of the Sixth East Asia-Pacific Conference on Structural Engineering and Construction Vibration control of large structures using sliding mode fuzzy control Yun, C. B.;Kim, S. B.
  30. Earthquake Engineering and Structural Dynamics v.27 no.11 Benchmark problems in structural control part Ⅱ : active tendon system Spencer, B. F. Jr.;Dyke, S. J.;Deoskar, H. S.
  31. Journal of Engineering Mechanics v.115 no.8 Experiments on active control for mdof seismic structures Chung, L. L.;Lin, R. C.;Soong, T. T.;Reinhorn, A. M.
  32. Journal of Engineering Mechanics v.123 no.9 Structural control: past, present, future Housner, G. W.;Bergman, L. A.;Caughey, T. K.;Chassiakos, A. G.;Claus, R. O.;Masri, S. F.;Skelton, R. E.;Soong, T. T.;Spencer, B. F.;Yao, J. T. P.
  33. Earthquake Engineering and Structural Dynamics v.28 no.6 Predictive optimal control for seismic analysis of non-linear and hysteretic structures Huang, K.;Betti, R.
  34. Earthquake Engineering and Structural Dynamics v.28 A new method of reduced-order freedback control using genetic algorithms Kim, Y. J.;Ghaboussi, J.
  35. Journal of Engineering Mechanics v.104 no.2 Active control of building structures Sae, U. S.;Yao, J. T. P.
  36. Engineering Structures v.10 Active structural control in civil engineering Soong, T. T.
  37. Active Structural Control: Theory and Application Soong, T. T.
  38. Earthquake Engineering and Structural Dynamics v.27 no.11 A study of fixed order mixed norm design for a benchmark problem in structural control Whorton, M. S.;Calise, A. J.;Hsu, C. C.
  39. Journal of Guidance, Control and Dynamics v.17 no.3 Integrated modeling and control for the large spacecraft control lab experiment facility Zhu, G.;Skelton, R.
  40. Journal of Control and Optimization v.35 no.1 A convergent algorithm for the output covariance constraint control problem Zhu, G.;Rotea, M.;Skelton, R.