초록
스위치드 리럭턴스 전동기(SRM)는 상대적으로 낮은 가격, 간단하고 견고한 구조, 제어의 용이성과 고효율을 가지기 때문에 가변속 구동에서 점점 응용범위가 확대되고 있다. 본 논문에서 신경망이론은 퍼지-신경망 제어기의 소속함수와 퍼지규칙을 결정하는데 사용하였으며, 신경망 에뮬레이터는 SRM의 전방향 동특성을 모사하는데 사용하였다. 에뮬레이터의 역전파 오차는 퍼지-신경망 제어기의 소속함수와 퍼지규칙을 개선하는 경로를 제공한다. 32비트 DSP(TNS329C31)는 고속연산과 퍼지-신경망 제어 알고리즘을 실현하는데 사용하였다. 시뮬레이션과 실험결과는 부하변화의 경우 제안된 제어방법이 속도응답에서 종래의 방법보다 우수하였다.
Switched Reluctance Motor(SRM) have been expanding gradually their awlications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. In this paper neural network theory is used to detemrine fuzzy-neural network controller's membership ftmctions and fuzzy rules. In addition neural network emulator is used to emulate forward dynamics of SRM and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. The backpropagated error of emulator offers the path which reforms the fuzzy-neural network controller's mmbership ftmctions and fuzzy rules. 32bit Digital Signal Processor(TMS320C31) was used to achieve the high speed control and to realize the fuzzy-neural control algorithm. Simulation and experimental results show that in the case of load variation the proposed control rrethcd was superior to a conventional rrethod in the respect of speed response.sponse.