배경을 제외한 영상에서 명암과 특징을 기반으로하는 스테레오 정합

Stereok Matching based on Intensity and Features for Images with Background Removed

  • 최태은 (LG정보통신 단말연구소) ;
  • 권혁민 (포항공과대학 컴퓨터공학과) ;
  • 박종승 (한국전자통신연구원 가상현실연구부 연구원) ;
  • 한준희 (포항공과대학교 컴퓨터공학과)
  • 발행 : 1999.12.01

초록

기존의 스테레오 정합 알고리즘은 크게 명암기반기법과 특징기반기법의 두 가지로 나눌 수 있다. 그리고, 각 기법은 그들 나름대로의 장단점을 갖는다. 본 논문은 이 두 기법을 결합하는 새로운 알고리즘을 제안한다. 본 논문에서는 물체모델링을 목적으로 하기 때문에 배경을 제거하여 정합하는 방법을 사용한다. 이를 위해, 정합요소들과 정합유사함수가 정의되고, 정합유사함수는 두 기법사이의 장단점을 하나의 인수에 의해 조절한다. 그 외에도 거리차 지도의 오류를 제거하는 coarse-to-fine기법, 폐색문제를 해결하는 다중윈도우 기법을 사용하였고, 물체의 표면형태를 알아내기 위해 morphological closing 연산자를 이용하여 물체와 배경을 분리하는 방법을 제안하였다. 이러한 기법들을 기반으로 하여 여러가지 영상에 대해 실험을 수행하였으며, 그 결과들은 본 논문이 제안하는 기법의 효율성을 보여준다. 정합의 결과로 만들어지는 거리차 지도는 3차원 모델링을 통해 가상공간상에서 보여지도록 하였다.Abstract Classical stereo matching algorithms can be classified into two major areas; intensity-based and feature-based stereo matching. Each technique has advantages and disadvantages. This paper proposes a new algorithm which merges two main matching techniques. Since the goal of our stereo algorithm is in object modeling, we use images for which background is removed. Primitives and a similarity function are defined. The matching similarity function selectively controls the advantages and disadvantages of intensity-based and feature-based matching by a parameter.As an additional matching strategy, a coarse-to-fine method is used to remove a errorneous data on the disparity map. To handle occlusions, multiple windowing method is used. For finding the surface shape of an object, we propose a method that separates an object and the background by a morphological closing operator. All processes have been implemented and tested with various image pairs. The matching results showed the effectiveness of our method. From the disparity map computed by the matching process, 3D modeling is possible. 3D modeling is manipulated by VRML(Virtual Reality Manipulation Language). The results are summarized in a virtual reality space.

키워드

참고문헌

  1. Computing Surveys v.14 no.4 Computational Stereo S. T. Barnard;M. A. Fishler
  2. Three-Dimensional Computer Vision, A Geometric Viewpoint O. D. Faugeras
  3. In International Joint Conference on Artificial Intelligence Depth from edge and intensity based stereo H. H. Baker;T. O. Binford
  4. Computer Vision and Image Understanding v.63 no.3 A Maximum Likelihood Stereo Algorithm I. J. Cox;S. L. Hingorani;S. B. Rao;B. M. Maggs
  5. IEE Trans. PAMI v.7 no.2 Stereo by intra- and inter-scanline search using dynamic programming Y. Ohta;T. Kanade
  6. Comp. Graphics Img. Proc. v.13 Segment-based stereo matching G. G. Medioni;R. Nevatia
  7. IEEE Transactions on PAMI v.16 Multi-Primitive Hierarchical(MPH) Stereo Analysis S. B. Marapane;M. M. Trivedi
  8. ICCV v.6 Intensity and Feature Based Stereo Matching by Disparity Parameterization Guo-Qing Wei;Gerd Hirzinger
  9. IEEE Transactions on PAMI Surfaces from Integrating Feature Matching, Disparity Information and Contour Detection W. Hoff;N. Ahuja
  10. Color Stereo Vision Using Hierarchical Block Matching and Active Color Illumination A. Koschan;V. Rodehorst;K. Spiller
  11. IEEE Transactions on PAMI v.16 no.9 A stereo matching algorithm with an adaptive window theory and experiments T. Kanade;M. Okutomi
  12. Proceedings of CVPR Efficient Stereo with Multiple Windowing A. Fusiello;V. Roberto;E. Trucco
  13. Artificial Vision for Mobile Robots;Stereo Vision and Multisensory Perception N. Ayache
  14. IEEE Transactions on PAMI v.17 no.7 Stereo Matching in the Presence of Narrow Occluding Objects Using Dynamic Disparity Search U. R. Dhond;J. K. Aggarwal
  15. Proceedings CVPR The Calibration Problem for Stereo O. D. Faugeras;G. Toscani
  16. in Second European Conference on Computer Vision Computational issues in solving with occlusions J. P. Frisby;S. B. Pollard
  17. Proceedings of DARPA Image Understanding Workshop A multiple-baseline stereo method T. Kanade;M. Okutomi;T. Nakahara
  18. Image Pyramids and Curves W. G. Kropatsch
  19. A Paraperspective Factorization Method for Shape and Motion Recovery C. J. Poelman;T. Kanade
  20. On occluding Contour Artifacts in Stereo Vision R. Sara;R. Bajcsy
  21. IEEE Workshop on Representations of Visual Scenes Direct Methods for Visual Scene Reconstruction R. Szeliski;S. Bing Kang
  22. IEEE Journal of Robotics and Automation v.RA-3 no.4 A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the Shelf TV Cameras and Lenses R. Y. Tsai
  23. in International Conference on Computer Vision Building, registering, and fusing noisy visual maps N. Ayache;O. Faugeras