Physical Characterization of GaAs/$\textrm{Al}_{x}\textrm{Ga}_{1-x}\textrm{As}$/GaAs Heterostructures by Deep Level transient Spectroscopy

DLTS 방법에 의한 GaAs/$\textrm{Al}_{x}\textrm{Ga}_{1-x}\textrm{As}$/GaAs 이종구조의 물성분석에 관한 연구

  • Lee, Won-Seop (Applied materials Korea) ;
  • Choe, Gwang-Su (Dept.of Electronics Information Engineering, Engineering College, Suwon University)
  • Published : 1999.05.01

Abstract

The deep level electron traps in AP-MOCVD GaAs/undoped Al\ulcornerGa\ulcornerAs/n-type GaAs heterostructures have been investigated by means of Deep Level Transient Spectroscopy DLTS). In terms of the experimental procedure, GaAs/undoped Al\ulcornerGa\ulcornerAs/n-type GaAs heterostructures were deposited on 2" undoped semi-insulating GaAs wafers by the AP-MOCVD method at $650^{\circ}C$ with TMGa, AsH3, TMAl, and SiH4 gases. The n-type GaAs conduction layers were doped with Si to the target concentration of about 2$\times$10\ulcornercm\ulcorner. The Al content was targeted to x=0.5 and the thicknesses of Al\ulcornerGa\ulcornerAs layers were targeted from 0 to 40 nm. In order to investigate the electrical characteristics, an array of Schottky diodes was built on the heterostructures by the lift-off process and Al thermal evaporation. Among the key results of this experiment, the deep level electron traps at 0.742~0.777 eV and 0.359~0.680 eV were observed in the heterostructures; however, only a 0.787 eV level was detected in n-type GaAs samples without the Al\ulcornerGa\ulcornerAs overlayer. It may be concluded that the 0.787 eV level is an EL2 level and that the 0.742~0.777 eV levels are related to EL2 and residual oxygen impurities which are usually found in MOCVD GaAs and Al\ulcornerGa\ulcornerAs materials grown at $630~660^{\circ}C$. The 0.359~0.680 eV levels may be due to the defects related with the al-O complex and residual Si impurities which are also usually known to exist in the MOCVD materials. Particularly, as the Si doping concentration in the n-type GaAs layer increased, the electron trap concentrations in the heterostructure materials and the magnitude of the C-V hysteresis in the Schottky diodes also increased, indicating that all are intimately related.ated.

Keywords

References

  1. 응용물리학회지 v.8 no.5 최영환;이원섭;최광수
  2. Rech. Aerosp. v.17 A.Roizes;J.P.David
  3. J. Icole Revue de Physique Applizque v.18 J.P.David;A.Roizes;M.Bonnet;N.Visentin
  4. J. Crystal Growth v.55 L.Samuelson;P.Omling;H.Titze;H.G.Grimmeiss
  5. Phys. Rev. Lett. v.45 O.F.Sankey;H.P.Hjalmarson;J.D.Dow;D.J.Wolford;B.G.Streetman
  6. Handbook on Semiconductors Completely Revised and Enlarged Edition v.3b M.Skowronski;T.S.Moss;S.Mahajan(ed.)
  7. Electron. Lett. v.11 no.14 F.Hasegawa;H.Majerfeld
  8. Electron. Lett. v.13 no.7 G.M.Martin;A.Mitonneau;A.Mircea
  9. J. Appl. Phys. v.50 no.7 M.Ozeki;J.Komeno;A.Shibatomi;S.Ohkawa
  10. Appl. Phys. Lett. v.36 no.4 P.K.Bhattacharya;J.W.Ku;S.J.T.Owen;V.Aebi;C.B.Cooper;R.L.Moon
  11. J. Crystal Growth v.55 H.Zhu;Y.Adachi;T.Ikoma
  12. Appl. Phys. Lett. v.42 no.7 M.R.Brozel;I.Grant;R.M.Ware;D.J.Stirland
  13. Jpn. J. Appl. Phys. v.22 no.6 M.O.Watanabe;A.Tanake;T.Udagawa;T.Nakanisi;Y.Zohta
  14. Jap. J. Appl. Phys. v.23 no.5 T.Hashizume;E.Ikeda;Y.Akatsu;H.Ohno;H.Hasegawa
  15. Appl. Phys. Lett. v.47 no.9 H.J.Bardeleben;D.Stievenard;J.C.Bourgoin;A.Huber
  16. Appl. Phys. Lett. v.48 no.24 Y.Kitagawara;N.Noto;T.Takahashi;T.Takenaka
  17. Jap. J. Appl. Phys. v.25 no.10 T.Soga;S.Sakai;M.Umeno;S.Hattori
  18. IEEE Trans. Inst. Meas. v.42 no.5 B.D.Nener;S.T.Lai;L.Faraone;A.G.Nassibian
  19. J. Appl. Phys. v.51 no.10 E.E.Wagner;Dan E.Mars;G.Hom;G.B.Stringfellow
  20. J. Crystal Growth v.55 J.P.Andre;M.Boulou;A.Micrea-Roussel
  21. Appl. Phys. Lett. v.41 no.7 T.Matsumoto;P.K.Bhattacharya
  22. J. Crystal Growth v.68 D.Allsopp;A.R.Peaker
  23. J. Crystal Growth v.68 P.K.Bhattacharya;T.Matsumoto;S.Subramanian
  24. J. Appl. Phys. v.55 no.10 P.K.Bhattacharya;S.Subramanian;M.J.Ludowise
  25. J. Appl. Phys. v.58 no.1 M.Sakamoto;T.Okada
  26. Appl. Phys. Lett. v.44 J.Lagowaki;D.G.Lin;T.Aoyama;H.C.Gatos
  27. Appl. Phys. Lett. v.45 no.12 O.Kumagai;H.Kawai;Y.Mori;K.Kaneko