Abstract
This paper proposes a noun sense disambiguation method based-on corpus and conceptual information. Previous research has restricted the use of linguistic knowledge to the lexical level. Since knowledge extracted from corpus is stored in words themselves, the methods requires a large amount of space for the knowledge with low recall rate. On the contrary, we resolve noun sense ambiguity by using concept co-occurrence information extracted from an automatically sense-tagged corpus. In one experimental evaluation it achieved, on average, a precision of 82.4%, which is an improvement of the baseline by 14.6%. considering that the test corpus is completely irrelevant to the learning corpus, this is a promising result.
본 노문에서는 말뭉치와 개념정보에 기반한 명사 중의성 해소 방법을 제안하다. 지곤의 연구에서는 대부분 어휘의 공기 정보을 이용하고있으나, 이러한 방법은 많은 저장공간이 필요하고, 적용률이 크지 않다는 단점이 있다. 본 논무에서는 자동으로 의미 태깅된 한국어 말뭉치에서 추출된 공기 개념정보를 이용하여 명사 중의성을 해소하는 방법을 제안한다. 제안한 방법의 평가 실험에서 기본의미를 정하는 것보다 1.6% 높은 평균 82.4%의 정확률을 보였다. 실험 문장들이 학습문장과 다른 것을 고려하면, 제안된 방법이 어휘 중의성 해소에 유용함을 보여주는 결과라고 할 수 있다.