Abstract
Effect of sulfur segregation on tertiary recrystallization and magnetic induction during final annealing was investigated in a 3% Si-Fe electrical strip containing 6 ppm(LS) and 15 ppm(HS) sulfur. During final annealing, Auger peak height of segregated sulfur on the surface of the strips reached a maximum, and then decreased to low level with increasing annealing time, which is attributed to sulfur segregation and evaporation. The magnetic induction of the thin-gauged 3% Si strip was inversely proportional to the Auger peak height of segregated sulfur on the surface. The overall profile for surface segregation of sulfur and B10 was observed, irrespective of sulfur content in Si-Fe strips, but the peaks of LS strips appeared earlier than those of HS strips. The grain growth rate of the LS strips during final annealing was faster than that of the HS strips, which may be attributed to the pinning effects of segregated sulfur. With increasing final annealing temperature, B10 value increased rapidly and the saturation level in B10 increased.