GENERAL PROPERTIES OF CONTACT BINARY SYSTEM FOR MASS RATIO DISTRIBUTION

접촉식쌍성의 질량비 분포에 따른 일반적 특성

  • 오규동 (전남대학교 사범대학 지구과학교육과)
  • Published : 1999.06.01

Abstract

With a total 761 contact binary systems in Svechnikov & Kuznetsova(1990)'s catalogue, their physical properties by the mass ratio are investigated - for the early CE type with a common radiative envelope and the late CW type with a common convective envelope. It is found that the early CE type shows a higher temperature difference($\mid$$DeltaT$$\mid$) between the primary and secondary components, and also longer period, than the late CW type. The mass ratio of the CW type are distributed in period, than the late CW type. The mass ratio of the CW type are distributed in smaller ranges, from 0.3 to 0.7, than the CE type. Further, the relation between mass ratio and luminosity for the CW type shows a well-defined linear relation, such as ratio and luminosity for the CW type shows a well-defined linear relation, such as $L_2/L_1$ = 0.01 = 0.89q. In the mass ratio-radii relation, it is confirmed that the physical difference of the CE and CW types is a result of the secondary radius. A new mass ratio-radii relation for the CW type is suggested for both the total radius $({gamma}_1/{gamma}_2$ and the radius ratio $({gamma}_2/{gamma}_1$, respectively.

Svechnikov & Kuznetsova(1990)의 목록으로부터 761개의 접촉식쌍성을 택하여 그의 물리적 특성에 따라 공통 복사대기층을 갖는 CE형과 공통 대류대기층을 갖는 CW형으로 분류하여 질량비에 따른 그의 특성을 분석하였다. 그 결과 분광형이 조기형인 CE형은 만기형인 CW 형에 비교하여 주성과 반성의 온도차($$\mid${Delta}T$\mid$$)가 크며 주기는 길게 나타났다. 그런데 CW형은 CE형에 비교하여 질량비가 다소 좁은 범위(0.3$L_2/L_1=0.01+0.89q$의 상관 관계를 보였다. 한편, 질량비에 따른 반경과의 관계에서는 CE형과 CWs형의 차이의 원인이 반성의 반경 때문임을 확인하였으며, CW형 접촉식쌍성의 질량비에 따른 두 별의 반경의 합과 반경비와의 새로운 관계를 제시하였다.

Keywords

References

  1. New Windows to the Universe Duquennoy, A.;Mayor, M.;F. Sanches(ed.);M. Vasquez(ed.)
  2. A&A v.248 Duquennoy, A.;Mayor, M.
  3. MNRAS v.264 Kaluzny, J.;Krzeminski, W.
  4. MNRAS v.262 Kaluzny, J.;Mazur, B.;Krzeminski, W.
  5. ApSS Library v.68 Dynamics of Close Binary Systems Kopal, Z.
  6. Nature v.339 Latham, D.W.;Mazeh, T.;Stefanik, R.P.;Mayor, M.;Burki, G.
  7. ApJ v.151 Lucy, L.B.
  8. ApJ v.205 Lucy, L.B.
  9. A&A v.311 Maceroni, C.;van't Veer, F.
  10. ApJ v.344 Marcy, G.W.;Benitz, K.J.
  11. AJ v.100 Mateo, M.;Harris, H.C.;Nemec, J.;Olszewsky, E.W.
  12. ApJ v.394 Mazeh, T.;Goldberg, D.
  13. Active Close Binaries Mazeh, T.;Latham, D.W.;Stefanik, R.P.;Torres, G.;Wasserman, E.;C. Ibanoglu(ed.)
  14. MNRAS v.273 Mazur, B.;Krzeminski, W.;Kaluzny, J.
  15. Active Close Binaries Shaw, J.S.;C. Ibaniglu(ed.)
  16. ApJ v.461 Shaw, J.S.;Caillault, J.-P.;Schmitt, J.H.M.M.
  17. ApJ v.209 Shu, F.H.;Lubow, S.H.;Anderson, L.A.
  18. Catalogue of Approximate Photometric and Absolute Elements of Eclipsing Variable Stars v.I;II Svechnikov, M.A.;Kuznetsova, E.F.
  19. MNRAS v.242 Tout, C.A.
  20. MNRAS v.242 Trimble, V.
  21. AJ v.108 Yan, L.;Mateo, M.