Mismatching Refinement with Domain Decomposition and Its Application to the Finite Element Analysis of the Extrusion Process

영역분할에 의한 격자세분화 기법 및 압출공정의 유한요소해석에의 적용

  • 박근 (삼성전기(주) 금형개발실) ;
  • 양동열 (한국과학기술원 기계공학과)
  • Published : 1999.06.01

Abstract

The rigid-plastic finite element analysis requires a large amount of computation time due to its non-linearity. For economic computation, mismatching refinement, and efficient domain decomposition method with different mesh density for each sub domain, is developed. A modified velocity alternating scheme for the interface treatment is proposed in order to obtain good convergence and accuracy. As a numerical example, the axisymmetric extrusion process is analyzed. The results are discussed for the various velocity update schemes form the viewpoint of convergence and accuracy. The three-dimen-sional extrusion process with rectangular section is analyzed in order to verify the effectiveness of the proposed method. Comparing the results with those of the conventional method of full region analysis, the accuracy and the computational efficiency of the proposed method are then discussed.

Keywords

References

  1. SIAM J. of Numerical Analysis v.15 Error estimates for adaptive finite element method computation I.Babuska;W.C.Rheinboldt
  2. Int. J. Numer. Meth. Engng. v.12 A posteriori error estimates for the finite element analysis I.Babuska;W.C.Rheinboldt
  3. Int. J. Numer. Meth. Engng. v.17 Adaptive mesh refinement processes for finite element solutions W.C.Rheinboldt
  4. Int. J. Numer. Meth. Engng. v.24 A simple error estimator and adaptive procedure for practical engineering analysis O.C.Zienkiewicz;J.Z.Zhu
  5. Int. J. Numer. Meth. Engng. v.25 Error estimation and adaptivity in flow formulation for forming problems O.C.Zienkiewicz;Y.C.Liu;G.C.Huang
  6. Int. J. Numer. Meth. Engng. v.35 An automatic adaptive refinement finite element procedure for 2d elatostatic analysis C.K.Lee;S.H.Lo
  7. Int. J. Numer. Meth. Engng. v.35 An adaptive h-refinement using transition element for plate bending problems C.K.Choi;Y.M.Park
  8. Structural Engng. and Mechanics v.1 Three dimensional transition solid elements for adaptive mesh gradation C.K.Choi;N.H.Lee
  9. Ges. Math. Abhandlungen, Bd.1 Uber enen grenz bergang durich alternirender verfahren H.A.Schwarz
  10. Compte Rendus de 1'Accidemie des Sciences de L'URSS v.IV L'Algorithm de Schwarz dans la Theorie de I'Elasticite S.Sobolev
  11. Parallel super-computing: method, algorithm and applications Pseudo-boundary conditions to accelerate parallel Schwarz methods G.Rodrigue;S.Shah
  12. Int. J. Numer. Meth. Engng. v.24 A new finite element concurrent computer program architecture C.Farhat;E.Wilson
  13. Proc.5th Conf. Domain Decomposition Meths. for Partial Differential Equations Additive Schwarz methods for elliptic finite element problems in three-dimensions M.Dryja;O.Widlund;Chan,T.F.(ed.);Keyes,D.E.(ed.);Meurant,G.A.(ed.);Scroggs,J.S.(ed.);Voight,R.G.(ed.)
  14. Comp. Systems in Engng. v.2 Generation and decomposition of finite element models for parallel computations I.St.Doltsinis;S.Nolting
  15. J. of Engng. for Indust. v.95 New solution to rigid plastic deformation using a matrix method C.H.Lee;S.Kobayashi
  16. ASME, AMD v.28 Rigid-plastic finite element analysis of ring compression C.C.Chen;S.Kobayashi
  17. 대한기계학회논문집(A) v.22 강소성 유한요소해석에서의 사후오차추정 및 적응적 격자세분화에의 적응 박근;양동열