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ABSTRACT

A new method is proposed for the isolation of resonances from scattered waves for
acoustic wave resonance scattering problems. The resonance scattering function consisting
purely of resonance information is defined. Acoustic wave scattering from a wvariely of
submerged bodies is numerically analyzed. The classical resonance scattering theory (RST)
and the new method compute identical magnitudes of the resonances from each partial
wave, however, the phases are significantly different. The exact m-radians phase shifts
through the resonance and anti-resonance frequencies show that the proposed method
properly extracts the vibrational resonance information of the scatterer. Due to the
differences in phases of the resonances from each partial wave, the new method and RST
generate different total resonance spectra.
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Since the formalism of classical resonance
theory of nuclear reactions was applied to the
problem of acoustic wave scattering from
submerged elastic circular cylinders and spheres,
resonance scattering theory (RST)Y has been
the foundation of numerous studies on acoustic
and elastic wave resonance scattering. RST
demonstrates that the strongly fluctuating
behavior of the cross section for sound scattering
from elastic bodies is caused by a linear
superposition of the scatterer’s eigenvibration
part) and a
geometric background (non-resonance part). The

(resonance smoothly-varying
resonance scattering formalism shows the total
scattering is obtained as a sum of resonance
terms and a background term. Utilizing RST,
the resonance terms have been obtained by
subtraction of a proper background from the
individual partial wave in the Rayleigh normal
mode series during last two decades’™®. The
magnitude of the resonances could be obtained
with confidence by this procedure. However, the
phase information is not clearly explainable and
thus has remained unclear although the phase
information is as important as the magnitude
information. In this paper we propose a new
method to isolate the resonance information from
scattered waves so that both the magnitude and
phase (or real and imaginary parts) of the
isolated resonances are physically explainable and
meaningful.

2. Wave Scattering and Resonance
Scattering Theory

Let us consider an infinite plane acoustic wave
pg exp? (KX — wt) with a propagation constant
k=w/ c, incident along the X - axis on a solid
elastic cylinder of radius a and density o,

whose axis coincides with the Z- axis (Fig. 1).
At a point P(r,¢) located in the outside fluid
of density p,. it produces scattered field P :

Pu(r.$)= p X6 A, (OH (kwJcosng
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Fig. 1 Geometry for acoustic wave scattering from
a cylindrical object

where

o J@E - xJ,(x)
" HPOF, - xH" (x) (1b)

po is the incident pressure magnitude, &, is
the Neumann factor (¢, =1 for = =0, and ¢,
=2 for n> 0), J, and HY are the Bessel
function and the Hankel function of the first
kind, respectively, and F,, related to the modal

mechanical impedance of the cylinder, is the
quotient of two 2 X 2 determinants

FoPua D)
"o, DR, (2a)
where
D(l)(x) =lazz ay D(z)(x) - a, alal
" a, a,| " n Ay (2b)

. . (s
The elements a,, are given in standard texts ),

The argument x of the Bessel and Hankel
functions in Eq. (1b) is x=ke=wa / ¢, . where
¢, is the speed of sound in the ambient fluid.
The prime denotes differentiation with respect to
the argument. The elements a4, of Ea. (2b)
contain Bessel functions with arguments

x =ka=wa | c; and xr=kra=wa /| cr where
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¢y and cg are, respectively, the speeds of
longitudinal and ftransversal waves in the cylinder
material. If the asymptotic form of Hankel
function is introduced in the far-field where #

> a, the far-field scattered pressure becomes

FP.(#)= Poeibw}ﬁq’ é'gni"/“,.(x)cosnﬁ 3)

The far-field form function f. is defined to

give a non-dimensional representation of the
scattered pressure

_ 2B w
LT (4)

It can be given in other form by using Eq. (3),

E’ £,4,(x)cosng.

2
L@=7=Z

The individual normal modes or partial waves

(5)

which make up the form functions are defined

as

fw»J—aMnmw 6)
so that

Lw=§nw. 7

There are two limiting cases of these results. If
p.~—> %, the solution applies to scattering by a

rigid cylinder:

A
AR = ga gy (8)

If p.—0, the solution applies to scattering by a
soft cylinder:

__Ja®
AGY = HO(x) . (9)
The scattered pressure of Eq. (la) may be
rewritten as the normal mode series
P =23 5,7(S, ~DH (k) cosnd, 10

where the scattering function of the » th mode

with a constant unit magnitude, containing the
scattering phase shifts 4, is introduced as
follows :

S, =€ (11)

In the present case,
S,,—1=2A,,(x). (12)

For rigid and soft cylinders, the scattering
functions are respectively

Sr = H(Z) = eli&;
" H“) (13a)
and
H(z) 2iJ;
5 =-n_ ¥
"ETHE (13b)

The corresponding phase shifts can be shown to
be the real quantities

J,(x)
Y. (x). (14)

n

r ( ) 3
tand, = and tand, =
an ( ) an

A rigid or soft scattering function may be
factored out from the ‘elastic scattering function

as follows:

S, =S, (K =z I(F =2 (15a)
or

S, =S, (F, =z I (F, -2"), (15b)

where the quantities
2 = xHY (x) 1 HO(x),i =1,2 (15¢)

are related to the modal specific acoustic
impedances.
The quantity S,—1 that appears in Eq. (10)

can be expressed as

- ir; 5
S, ~1=2ie” [y —2-Te 4 7 5in g7
[; X = x - Lil), (16a)
or
S 1=2i 2i8, [i %r:l + -8, ¢ 5:]
-1=2je""[) ———"———+e7""sind,
" o x5 - x - L, , (16b)

where x,; or xj; is the [th resonance frequency

of the =z th mode, and Iy, or IG5 is the
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resonance width which is related to radiation
damping. Based on the Eq. (16) RST claims
that the scattered field is a summation of two
components, i.e., the resonance component which
is the first term of Eq. (16a) and (16b), and
the smooth background component which is the
second term of the same equations. Utilizing
RST, numerous books and papers(1~8)
obtained the resonance information of the

have
scatterer by just subtracting the proper
background term from the total scattered wave
field:

1 (¢)_J——€ (4, - A))cosng = f, - f; (172)

or

res s A, - A))cosn
The case of plane acoustic wave scattering from
an elastic sphere (Fig. 2) can be treated
analogously to that of a cylinder resulting in the
following expressions :

res ___3- 4T - _ £
S @)=~ 2in e D4, - 4D (cosnd)= £, = [ (1)

or
5LEP= ——l(2n+l)(A - AP, (cosng) = f, - f, . (18b)
Scattered
Acoustic Wave
(pw <€)
Incident

Acoustic Wave

Fig. 2 Geometry for acoustic wave scattering from
a spherical object
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.the coefficients A,, A,

where P, is a Legendre function. In Eq. _(18)
and A;

spherical functions instead of cylindrical functions,

contain

The case of cylindrical or spherical elastic shell
structures rather than solid ones is basically the

same as above with larger determinants Df,” and

D® in Egs. (2a) and (2b). The case of an

insonified fluid cylinders or spheres instead of
elastic bodies is also very similar, in which case
F, becomes the quotient of two cylindrical or

spherical functions. However, the forms of
expressions of Egs. (17) and (18) still remain
the same,.

Equation (17) or (18) seems to give the
correct resonance magnifude information.
However, the phase behavior of resonances
obtained by this method is not physically
explainable and, therefore, not useful although it
is well known that the phase of a resonance
term should shift by =& radians as the frequency
passes through the resonance frequency. The
magnitude and phase calculated using the

classical RST will be discussed further in section 4.

3. New Method for Extracting the Resonance
Information from Scattered Waves

In this section, we try to establish a new
resonance formalism® to extract the resonance
information from scattered waves.

Restarting with Eq. (16a), the scattering

function S, can be expressed as follows:

S, =S8, (19)
where
S, =(F =z (F =20,

In Eq. (19), S, is the product of the rigid
background S, and the remaining term Sy,
which includes resonance information. However,
S, is not a pure resonance form because it

contains the modal characteristics terms in both



A New Method- for Exiracting Resonance Iaformation in Acoustic Wave Resonance Scatfering

numerator and denomenator. S, has a constant
term which hides resonances wunless it s

removed. S, may be written

S, =(F =z I(F -2
=(Z§”‘— ZYIE =72 +1
=5+, (20)

where S is defined as the resonance

scattering function (RSF) which consists purely
of resonance information. By the definition in
Eq. (19), the RSF can be expressed as

S;“=S_n_1_2f__‘£
S 14247, (21)
where A,,=%(S,,—1) and A;=‘%’(S;—l ).

S,—1 in Eq. (10) contributes to the total
response including both the background and the

resonance. S,° is the only resonance-related

component of S, . The subtraction of a constant

real number from a complex quantity results in
a new complex quantity different from the
original complex 'quantity. Therefore, from Eq.
(10), the scattered wave due to resonance can

be obtained by replacing S,~—1 with S™:

Br(r.¢)= -;'i £,i"S* HY (kr) cosng

o A=A (22)
26T H,’ (kr)cosng

Then, the individual normal mode for resonances

in the far-field can be expressed as

r

res - 2 An A
fn (¢)— ‘J}; 2Ay C05n¢

(23)

The expressions involving the corresponding soft
background parameters are analogous:

S, =(F, —z”)I(F, -z,”)
._(Z(l) (2))/(17" _zr(:l))+1
ST, . (24)
S A, - A
Sre.v:_L_l:z n n’
"os 1424 (25)

and

res 4, -4,
T (¢)'J— 1+245 ;-oosng., (26)
In case of a sphere instead of a cylinder, S,

contains spherical functions rather than cylindrical
functions. The expressions corresponding to _Eqs.
(23) and (26) are respectively

4,)

g 2 (4, -
L2 (P) = 1(2 n+ l)—2—=22 a+ 2A ) P, (cosn¢)’ (27)
and
res __2 (4,- 4)
@)= t(2n+ 1) Lo (1424 vl 2 (1] n¢) (28)

The expressions in Eqs. (23), (26), (27) and
(28) are also applicable to acoustic wave
scattering from elastic cylindrical/spherical shell
structures or fluid spheres /cylinders with the

appropriate changes in F, as mentioned in

section 2.

By using Eqgs. (23), (26), (27) and (28), the
resonances which are mixed with the back-
ground in the total scattered pressure field can
be uncovered. The only difference between these
new equations and the old equations (Egs. (17)
and (18)) is the existence of the denominator

1+2A, or 1+2A;, which is respectively the

scattering function S, or S; corresponding to
the impenetrable targets in two extreme cases.
In case of acoustic wave scattering, where no
mode conversion occurs, and with no material
damping, which is being studied in the present
investigation, S, and S; are unitary. Therefore
these new and old equations produce completely
identical magnitudes, However, it should be
noted that their phases are not the same

because the scattering function S, or S in
the denominator has its own phase shift. If
Nyquist plots rather than Bode type plots are
examined, the new and old equations generate
constrasting results. Moreover, in elastic wave
scattering, where mode conversion occurs, both
the magnitude and phase obtained by the two
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methods will be different because the unitarity
condition applies to the scattering matrix and
cannot be extended to the individual scattering
functions.  Therefore, the new resonance
formalism has a more important meaning when
we are dealing with elastic wave scattering.
However, our discussion in this paper is limited

to acoustic wave scattering case.

4. Relationship between the New Method and
Resonance Scattering Theory

By considering Eq. (12) and following relation-
ships

Sy = e (29)
and

8! —1=2ie" "smé" (30)

Eq. (16a) can be expressed as

a0 lr’
A 1424) 2t
= A0+ 240 202 ~x- il (31)

Now, if we approximate S,° near resonance

frequencies as

R T
. _g'x:,—x-%ir,’, ’ (32)
and substitute into Eq. (31), Eq. (21) of the
resonance scattering function is obtained. In case
of the soft background, Eq. (25) can be
obtained by approximating

Fiadil Y S b R

o X —x-ily (33)

and by following the similar procedure used for
rigid background case.

Therefore, it is revealed that the new
resonance formalism in Eqgs. (23), (26), (27) and
(28) is consistent with RST formulation. One
may argue that Egs. (17) and (18) are merely
an incorrect application of RST.

We note that Eqgs. (32) and (33) are
obtained by the
linearization near resonance frequencies. Thus,

approximate  expressions

these expressions are valid only near resonance

414/8 2227 SBHEX/A 9 A A 2 &, 19999

frequencies because the interactions between
resonances are not considered. Therefore, to
compute the exact resonances, numerical solutions
of Eqgs. (23) and (26) for a cylinder (or Egs.
(27) and (28) for a sphere) are required.

5. Examples and Numerical Analysis

All examples in this section are performed for
backscattering ( ¢=x). The acoustic properties
of materials used for numerical calculations are
as follows: Puuwer =1000 kg m”>, CL.water = 1480
m sec”, P 7 auminen =2800 kg M7, €L auminm =

3070 m sec’, P,

340 m sec’.

6370 m sec’, € 7. atominum =
=112 kg m>, cp =
The background is assumed to be rigid for

acoustic wave scattering from elastic bodies.
Acoustic plane wave scattering from solid elastic

mag

phase

(b)

mag
=3
]

2
[\ ]
& o0
-1['_'
0 5 10 15 20 25

ka

Fig. 3 Resonances computed by the new (solic
curve) and previous (dotted curve)
methods for a submerged aluminum

(a) Sphere and (b) Cylinder for n=1.
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Im[Snres]
(=]

-1

Re[Snf°5]
Fig. 4 Nyquist plot for the resonance scattering
function for all frequency range for any

type of scatterer immersed in water

spheres and cylinders in water is analyzed
numerically in Fig. 3. Resonances in each partial
wave are isolated and plotted separately by
using the previous method (Egs. (17) and (18))
and the new method (Eqgs. (23) and (27)). As
predicted in section 3, while the magnitudes are
perfectly identical, the phases are very different.
The new method generates exact =n- phase
shifts through the resonance. The shift occurs
abruptly or gradually depending on radiation
damping. The almost constant phase through the
first thick peak of Fig. 3 shows clearly that it is
not related to the scatterer’'s resonance. The
large size of the resonance-like peak may be
partly due to the incorrectness of the rigid
background especially in the low frequency
region. The =& - phase shift also occurs at the
anti-resonance caused by the mutual interaction
of adjacent resonances. RST calculates physically
unexplainable phase information as can be seen
by the dotted lines in Fig. 3.

If a Nyquist plot is constructed in the complex
plane as a function of non-dimensionalized
frequency ka, the new and previous methods
produce contrasting trajectories because both the
real and imaginary parts of the resonances are
different. Fig. 4 shows the Nyquist plot for the
resonance scattering function. Regardless of

, LT T T T 1]
é 1| -
>
%,

E
0 -
| i I | I

Re[Sn-Snr]
Fig. 5 Nyquist plot for S,—S, for n th scatterec
partial wave for a submerged aluminum
sphere for n=2 up to ka=25

Fig. 6 Total resonance spectra by the new (solid
curve) and previous (dotted curve)®
methods for a submerged aluminum cylinder

mode number # and the shape of scatterer
(spherical or cylindrical), the trajectory of S,°
makes a circle with unit radius centered at
(-1,0). This can be explained as follows : By
the definition of S~ in Egs. (19) and (20) and
by the fact that there is no mode conversion in
acoustic wave scattering, S, =ISi =S| =1,
therefore, |S;¥| =1S;—1], which forms the circle
in Fig. 2 in the complex plane as the

non-dimensionalized frequency Aa varies. This
unit circle is physically related to the energy

conservation during acoustic wave scattering.

Fig. 5 are Nyquist plots of S,—S, for the

o
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(n=2).
for the

case of the sphere
misleading information
obtaining the true resonances.

Because of the difference

purpose of

in the phases of

Fig. 5 is a

{a)

)]

10 15 20

I !

isolated resonances obtained by the two
methods, one expects that the resonance
spectrum, which is a total summation of isolated 2
resonances, will not be the same. Fig. 6 %
explicitly show the differences in summed
magnitude and phase for the cylinder. As can 0
2
0.5
(o]
]
€ o
E
0
0.0
T
8
g0 g "
(]
-n .g_
0
0 5 10 15 20 25
ka 4.66

Fig. 7 Resonances idolated by the new (solid curve)
and previous (dotted curve) methods for a

ka 4.70

Fig. 9 Resonances isolated by the new (solid curve)
and previous (dotted curve) methods for s

submerged air-filled . aluminum spherical submerged air sphere with (a) n =0 (b) r
shell (ratio of inner to outer radius = 0.2) =0 detailed plot kz=4.66-4.70
for n =2
3
—— new method
--------- previous method
o &
[ o
E Y :,.
o g AR ¥ o :' v
! i
n [} A ; .
3 y s ! v,
S : iy
a o[ / B
B A o b . v
| | I
0 10 20 30 40
ka

Fig. 8 Total resonance spectra (for

cylindrical shell (ratio of inner to outer radius =

416/8t2 2 STEBEEX/A 9 A Al 2 5, 19994

n=0 to 47) by the new (solid curve) and
previous (dotted curve)? methods for a submerged air-filled aluminum
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such as those of
8 .
Maze® led to an incorrect resonance spectrum.

be seen in Fig. 6 efforts

The discussions above are also applicable to
spherical and cylindrical shell structures, of
which inside is empty or filled with another
material, instead of solid ones. Fig. 7 compares
the resonances as calculated by two methods for
an air-filled spherical shell. Fig. 8 compares the
resonance spectrum up to ka =40 calculated by
the new method with that computed in the Ref.
4 for an air-filled aluminum cylindrical shell. The
proposed method can also be applied to acoustic
wave scattering from fluid spheres or cylinders.
Fig. 9 show resonances for the air sphere (»n
=0). In this case the proper background is the
soft  background rather than the rigid
background.

6. Conclusions

A new method is proposed for the extraction
of resonances from scattered waves for acoustic
wave scattering problems. Plane compressive
wave scattering from submerged bodies such as
elastic solid spheres and cylinders, shell structures,
and also fluid spheres and cylinders is analyzed
by the new method and the classical resonance
scattering theory. The exact = radians phase
shifts through the resonance and anti-resonance
frequencies show that the proposed method
properly extracts the resonances from each
scattered partial wave. The total resonance
spectrum computed by the new method show
different magnitude and phase from previous
studies. This paper has shown that the
physically unexplainable behavior of phase of the
resonances extracted by resonance scattering
theory for acoustic wave scattering was not due
to the inexactness of the rigid or soft

ting Resonance Information in:.Acoystic Wave Resonance Scattering -

background, but due to the use of an incorrect
resonance formalism.
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