Abstract
The strain sensing properties of th system xNiO-(1-x) CaO with various compositions (x=0.001-0.05) are evaluated and the origin of the phenomena is guessed. We have found out that the high temperature electrical conductivity of the xNiO-(1-x)CaO increases by applying the compressive stress at $1000^{\circ}C$. When the applied load is removed, the electrical conductivity rapidly decreases and returns to the original value, but a small hysteresis of the stress-conductivity curve is observed. After the loading test, the lattice parameter of the specimen is found lengthened. The correlation between the lengthening of the lattice parameter and the increases in the electrical conductivity by loading is discussed. The amount of the "expanded type" Ni(II)O6 clusters in the xNiO-(1-x)CaO grains is supposed to be increased by the applied stress, which would be the origin of the strain dependent electric conduction in the xNiO-(1-x)CaO system.aO system.