Abstract
Microsotructure designed porous ceramics of calcium hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2)$ were prepared by hydrothermal method. The particle size, shape, and the micro-pore size of the porous hydroxyapatite ceramics could becontrolled. The hydroxyapatite was non-stoichiometric apatite with calcium deficient compositions (Ca/P ratio < 1.67). The composition of non-stoichiometric hydroxyapatite ceramics could be controlled from 1.50 to 1.63 in Ca/P ratio. The hydroxyapatite ceramics preparedc at $105^{\circ}C$ under the saturated vapor pressure for 20h were composed of rod-shaped crystals with about 10$\mu\textrm{m}$ in length with the mean aspect ratio of 40. The porous ceramics of calcium deficient hydroxyapatite had about 45% porosity with the inter-connecting pore structure. Porous hydroxyapatite ceramics prepared hydrothermally had the compressive strength of about 10 to 30 MPa. In addition, porous ceramics of $\beta$-tricalcium phosphate ($\beta-Ca_3(PO_4)_2$) were prepared from the calcium deficient hydroxyapatite.