Microbial Tansformatin of $\gamma$-Butyrobetaine into L-Carnitine by Achromobacter cylcoclast

Achromobacter cycloclast에 의한 $\gamma$-Butyrobetaine의 L-Carnitine에로의 생물전환

  • 이은구 (생명공학연구소 생물공정연구부) ;
  • 이인영 (생명공학연구소 생물공정연구부) ;
  • 박영훈 (생명공학연구소 생물공정연구부)
  • Published : 1999.04.01

Abstract

We investigated optimal conditions for the microbial transformation of $\gamma$-butyrobetaine into L-carnitine by using Achromobacter cycloclast ATCC 21921. When the cells were cultivated in the medium containing $\gamma$-butyrobetaine as the sole carbon source for both cell growth and L-carnitine production, the maximum L-carnitine production was 2.9 g/L and the conversion yield from $\gamma$-butyrobetaine to L-carnitine was as low as 30.9 mol%. In order to enhance the L-carnitine production and the conversion yield, various carbon sources were added to the $\gamma$-butyronetaine containing basal medium. In the medium supplemented with glycerol, L-carnitine production was as high as 4.6 g/L and the conversion yield was 88.2 mol%, showing a significant improvement in L-carnitine synthesis compared to those in the medium without glycerol. We also examined the additional effect of quaternary ammonium compounds such as betaine and choline, which are similar in structure to $\gamma$-butyrobetaine and L-carnitien. It was observed that in the presence of those quaternary ammonium compounds, both the L-carnitine production rate and the conversion yield increased. In addition, we found that cell growth was inhibited by a $\gamma$-butyrobetaine concentration of more than 3%, while L-carnitine production was efficient at the $\gamma$-butyrobetaine concentration of 2-3%. By cultivating the cells in the optimal medium containing glycerol and choline, we obtained an L-carnitine concentration of 7.2 g/L with the conversion yield of 98.7 mol% in 4 days.

본 연구에서는 A.cycloclast ATCC 21921 균주를 사용하여 $\gamma$-butyrobetaine으로부터 L-carnitine을 생산하는 최적 조건에 대한 연구를 수행하였다. 배양액 내에 $\gamma$-butyrobetaine 만을 포함하였을때는 최대 L-carnitine 생산량이 29g/L이었고 전환수율도 30.9 mol%로 매우 낮았다. L-carmtine 생산에 미치는 탄소원의 영향을 관찰한 결과 glycerol을 첨가할 경우 L-carnitine 생산량이 4.6g/L 그리고 전환수율이 88.2 mol%로 $\gamma$-butyrobetaineaks을 포함하였을 때보다 월등히 향상되었다. Betaine, chohne와 같은 quaternary ammonium compounds 들이 L-carnitine 생산에 미치는 영향을 조사해본 결과, 이들에 의하여 L-carntine 생산 속도가 빨라지고 전환수율도 증가함을 알 수 있었다. 한편, 기질인 $\gamma$-butyrobetaine 농도 3% 이상에서 세포 생장은 저해되고 L-carnitine 생산은 기질 농도 2-3%에서 가장 우수함을 알 수 있었다. 본 연구에서 구한 최적 생산 조건, 다시 말해서 glycerol과 choline을 배양액에 포함하고 기질의 농도를 2%^로 하여 플라스크에서 회분식 배양을 하였을 때, 배양 4일 만에 최대 7.2g/L의 L-carrutine을 생산할 수 있었고 이때 $\gamma$-butyrobetaine으로부터 L-carnitine에로의 전환수율은 98.7mol%이었다.

Keywords

References

  1. Appl. Env. Micorbiol. v.47 Dependence of betaine stimulation of vitamin $B_{12}$ overproduction on protein synthesis FA, Y. H.;J. P. Kusel;A. L. Demain
  2. J. Biotechnol. v.22 Continuous cell-recycle process for L-carnitine production: Performance, engineering and downstream processing aspects compared with discontinuous processes Hoeks, F. W. J. M. M.;H. G. Kulla;H. P. Meyer
  3. Chem. Eng. J. v.61 Process integration aspects for the production of γ-butyrobetaine into L-carnitine Hoeks, F. W. J. M. M.;J. Muhle;L. Bohlen;I. Psenicka
  4. Appl. Microbiol. Biotechnol. v.40 Screening for a novel enzyme hydrolysing L-carnitine amide Joeres, U.;M. R. Kula
  5. Adv. Biochem. Eng. Biotechnol. v.50 Synthesis of L-carnitine by microorganisms and isolated enzymes Jung, H.;K. Jung;H. P. Kleber
  6. FEMS Microbiol. Lett. v.147 Bacterial carnitine metabolism Kleber H. P.
  7. Chimia v.45 Enzymatic hydroxylation in industrial application Kulla, H. G.
  8. US Patent 5,187,093 Microorganisms useful in the process for the production of L-carnitine Kulla, H. G.;P. Lehky
  9. J. Gen. Microbiol. v.130 betaine stimulation of vitamin $B_{12}$ biosynthesis in Pseudomonas denitrificans may be mediated by an increase in activity of δ-aminolaevulinic acid synthesis Kusel, J. P.;Y. H. Fa;A. L. Demain
  10. Biochem. v.9 no.22 γ-Butyrobetaine hydroxylase from Pseudomonas sp. AK 1 Lindstedt, G.;S Lindstedt;M. Tofft
  11. J. Lipid. Res. v.5 Enzymological determination of free carnitine concentrations in rat tissues Marquis, N. R.;I. B. Fritz
  12. J. Chromatogra v.459 Application of high performance liquid chromatography to the analysis of propionyl-L-carnitine by a stereospecific enzyme assay Marzo, A.;N. Monti;M. Ripamonti
  13. US patent 5,473,104 Process for the preparation of L-carnitine McCarthy, J. R.
  14. Enz. Micro. Technol. v.21 L(-)-Carnitine production with immobilized Escherichia coli cells in continuous reactors Obon, J. S.;J. R. Maiquez;M. Canovas;H. P. Kleber;J. S. Iborra
  15. FEMS Microbio. Lett. v.13 Formation of γ-butyrobetaine and trimethylamine from quaternary ammonium compounds structure-related to L-carnitine and choline by Proteus vulgaris Seim, H.;H. Loster;R. Claus;H. P. Kleber;E. Strack
  16. Appl. Microbiol. Biotechnol. v.27 Synthesis of L(-)-carnitine by hydration of crotonobetaine by enterobacter ia Seim, H.;H. P. Kleber
  17. US Patent 5,300,430 Biocatalytic process for the production of L(-)-carnitine from crotonobetaine and strains of Proteus for use in said process Shapiro, S.;M. Bernardini;C. J. Sih
  18. Agr. Biol. Chem. v.52 Asymmetric production of L-carnitine from transcrotonobetaine by Proteus mirabilis Yokozeki, K.;S. Takahashi;Y. Hirose
  19. Appl. Environ. Microbiol. v.39 Enzymatic synthesis of L-carnitine by reduction of an achiral precursor: the problem of reduced nicotinamide adenine dinucleotide recycling Vandecasteele, J. P.