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A Simple Method of Vibration Analysis of Special Orthotropic Plate

with A Pair of Opposite Edges Simply Supported and the Other
Pair of Opposite Edges Free
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ABSTRACT

In this paper, a simple but accurate method of vibration analysis of structural elements with or without
attached mass/masses is presented. The method used has been developed by D. H., Kim since 1974. This
method is very effective for the plates with arbitrary boundary conditions and irregular sections. This
method is applied to the special orthotropic plate with two opposite edges simply supported and the other
two opposite edges free. Such plate represents the most of the simply supported bridges/decks, including
concrete and girders-cross beam systems. Detailed illustration is given for beams and plates for easy
understanding. Some laminate orientation for which the special orthotropic equations can be applied are
identified.

1. INTRODUCTION design, fabrication, construction and quality con-

trol are established. Many of the bridge systems,

Composite materials can be used economically including the girders and cross-beams, and con-
and efficiently in broad civil engineering applica- crete decks behave as the special orthotropic
tions when standards and processes for analysis, plates which have [0°, 90°, 0°], fiber orientations.
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Some laminate orientations such as [of],, [afal.,
[aBBaaf),, and [affyaof], with certain values
of a, 8, and 7, and with increasing r, have decreas-
ing values of Bys, Bas, Dis, and Dy stiffnesses,
where a, £, and y are the fiber orientation in
degrees measured from the laminate axes, positive
in the counterclockwise direction[1,9,10], r is an
integer, and Bj; and Dy are the bending-stretching
coupling stiffness matrix and the flexural stiffness
matrix, respectively. Dj expresses the relation
between the stress couples, Mjs, and the curva-
tures, Kys. By relates Mjs to the mid-surface
strains, & ;s and the in-plane stress resultants, Njs,
to Xis. Bis and Bas cause bending-shearing and
stretching-twisting coupling. D¢ and D26 cause
bending-twisting coupling. Such laminates given
above may be very useful when one tries to apply
the advanced composite materials to new
constructions such as building slabs, bridge decks,
and so on. He can obtain the advantages of the
advanced composite materials using simplified
equations. For such laminates, the simple equa-
tions for the special orthotropic plates can be
used[1].

In case of a laminated composite plate with
boundary conditions other than Navier or Levy
solution types, or with irregular cross section, or
with nonuniform mass including point masses,
analytical solution is very difficult to obtain.
Numerical method for eigenvalue problems are
also very much involved in seeking such a solu-
tion[8,9,10].

The basic concept of the Rayleigh method, the
most popular analytical method for vibration
analysis of a single degree of freedom system, is
the principle-of conservation of energy ; the ener-
gy in a free vibrating system must remain constant
if no damping forces act to absorb it. In case of a
beam, which has an infinite number of degrees of
freedom, it is necessary to assume a shape function
inorder to reduce the beam to a single degree of
freedom system[11]. The frequency of vibration
can be found by equating the maximum strain

energy developed during the motion to the maxi-
mum kinetic energy. This method, however, yields
the solution either equal to or larger than the real
one. Recall that Rayleigh's quotient >1 [1]
(pp-189-191). For a complex beam, assuming a
correct shape function is not possible. In such cas-
es, the solution obtained is larger than the real one.

A method of calculating the natural frequency
corresponding to the first mode of vibration of
beam and tower structures was developed and
reported by Kim, D. H. in 1974[2]. In this report,
the effect of neglecting the weight of beams on
the natural frequency is given for several beam
support types.

Recently, this method was extended to the first
mode vibration analysis of two dimensional prob-
lems including composite laminates, and was
reported at the first Japan International Society for
the Advancement of Materials and Process Engi-
neering Symposium and Exhibition(JISSE [) in
1989(3]. Further extension of this method to the
second mode vibration of such two dimensional
problems was reported at the Eighth Structures
Congress of American Society of Civil Engineers
in 1990[4]. This method, applied to thick laminat-
ed plates, was reported at The Third East Asia-
Pacific Conference on Structural Engineering and
Construction (EASEC [1), 1991, The Eighth
International Conference on Composite Materials
(ICCM 8), 1991(5], and JISSE 1, 1991.

The merit of the presented method is that it uses
such influence coefficient values, used already for
calculating deflection, slope, moment and shear to
obtain the natural frequency of the structure.
When the plate has concentrated mass or masses,
one can simply add these masses to the plate mass
and use the same deflection influence surfaces to
obtain the natural frequency.

This paper presents the illustration of applica-
tion of this method to the special orthotropic
plates with a pair of opposite edges simply sup-
ported and the other pair of opposite edges free.
Such plates represent the case of bridge floor sys-
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tems and decks, and building floors made of
advanced composite material panels. This proce-
dure can easily be applied to any type of laminates
with arbitrary boundary conditions and non-uni-
form sections. Several structural elements such as
the floor slabs of a factory or a building and oth-
ers may be subject to point mass/masses in addi-
tion to its own masses. Design engineers need to
calculate the natural frequencies of such elements
but obtaining exact solution to such problems is
very much difficult. Pretlove reported a method of
analysis of beams with attached masses using the
concept of effective mass[12]. This method, how-
ever, is useful only for certain simple types of
beams. Such problems can be easily solved by
presented method. The effect of concentrated
mass at the center of the plate on the natural fre-
quency is also presented as an illustration.

In order to illustrate this method, some details
already reported by the senior author are repeated
in this paper.

2. METHOD OF ANALYSIS

A natural frequency of a structure is the fre-
quency under which the deflected mode shape
corresponding to this frequency begins to diverge
under the resonance condition. From the deflec-
tion caused by the free vibration, the force
required to make this deflection can be found, and
from this force, resulting deflection can be
obtained. If the mode shape as determined by the
series of this process is sufficiently accurate, then
the relative deflections (maximum) of both the
converged and the previous one should remain
unchanged under the inertia force relate with this
natural frequency.

Vibration of a structure is a harmonic motion
and the amplitude may contain a part expressed
by a trigonometric function. Considering only the
first mode as a start, the deflected shape of a
structural member can be expressed as

w = W(x,y)F(t) = W(x,y)sinat (D
where
W : the maximum amplitude
o : the circular frequency of vibration
t: time.
By Newton's Law, the dynamic force of the
vibrating mass, m, is

Fw
F= > 2
m— )
Substituting Equation (1) into this,
F = —m(w)’ Wsinax 3)

In this expression, » and W are unknowns. In
order to obtain the natural circular frequency, o,
the following process is taken. The magnitudes of
the maximum deflection at a certain number of
points are arbitrarily given as

w(i,j)(1) = W(i,j)(1) “
where (i,j) denotes the point under consideration.
This is absolutely arbitrary but educated guessing
is good for accelerating convergence. The dynam-
ic force corresponding to this(maximum) ampli-
tude is

F(i,i)(1) = m@j)[axi,j) (DI W) (%)

The “new” deflection caused by this force is a
function of F and can be expressed as

w(ij)(@) = fF{m(k D@D wkD(1)
= 3 AGij kD {mK D[, )(DT

w(k,1)(1)} (6)

where 4 is the deflection influence surface.
The relative (maximum) deflections at each point
under consideration of a structural member under
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resonance condition, w(i,j)(1) and w(i,j)(2), have
to remain unchanged and the following condition
has to be held :

w(i,p) (1) / w(i,j)(2) = 1 )

From this equation, ai,j)(1) at each point of
(1,j) can be obtained, but they are not equal in
most cases. Since the natural frequency of a struc-
tural member has to be equal at all points of the
member, i.e., axi,j) should be equal for all (i,j),
this step is repeated until sufficient equal magni-
tude of «xi,]) is obtained at all (i,j) points. Howev-
er, in most cases, the difference between the maxi-
mum and the minimum values of xi,j) obtained
by the first cycle of calculation is sufficiently neg-
ligible for engineering purposes. The accuracy can
be improved by simply taking the average of the
maximum and the minimum, or by taking the val-
ue of axi,j) where the deflection is the maximum.
For the second cycle, w(i,j}(2) in

w(i)(3) = f{m(i,j) [ w(j)(2)) (8)

the absolute numerics of w(i,j)(2) can be used for
convenience.

In case of a structural member with irregular
section including composite one, and non-uni-
formly distributed mass, regardless of the bound-
ary conditions, it is convenient to consider the
member as divided by finite number of elements.
The accuracy of the result is proportional to the
accuracy of the deflection calculation.

3. NUMERICAL EXAMPLE

3.1 Some Orientations Which Behave as
Special Orthotropic Plates
The material properties are assumed as
= 38.6 GPa, E> =8.27 GPa,
vz = 0.26, vy = 0.0557,
G; =4.14 GPa, a=b=1mand

h, = 0.00125 m for all plies.
Normalized stiffnesses are defined as
A*= A/ in GPa
B* = 2B/h2 in GPa
D* = 12D/h3 in GPa
where h and A are laminate thickness and the
extensional stiffness matrix, respectively.
[xfBBaof), and [aff], orientations have decreas-
ing values of Bg, Bas, D16, and Dye if @ = —f and
the number of plies, r, increases[1]. [afBB8yaof):
has the same property if y is either 0° or 90°. For
all orientations with above condition A%, / D%, =
I, indicating that these laminates are quasi-homo-
geneous.
The result in these tables indicates that the three
partial differential equations for the laminate
bending,

Ju Ju Ju Pv
Ay e +2A 6 X3y +Asgs 8y2 A6 e

At At A, LY
12 66/ axay T 26 ayz 11 axl

Jw ow Iw
—(B12+2Bss)——5+Bas—

EX] oxdy 3’

3By
=0 (9a)

Ju Ju Ju
Ais—5+(An+A +Ax—+
Lrwe (Ai2t+Age) o3y 26 %
v v ov aw
A 3 { 2A { A22 3 B
66 e 26 axay e 16 ax3

;
—(B1242Bs)—m——3Bas

'w

+Ba» ay3

=0 (9b)

4 v:3 4
Jw ow 0w
D“ aX4 t 4D1(, ax;ay } 2(D|7+2D66) ay
4

dw
+4D26 axay3 {Du ay4

o'w Ju J'u
BH ax_z 3B16 axzay
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(B12+2Bes) O p du g v
12 66/ axayz 26 ay} 16 ax;
a'v v a'v
—(B12+Bess)— 3B 5—Bar—
( 12 66/ ax_ay 26 axay_ 2 ay
=q(x,y) (9¢)

can be reduced to one equation, for the special
orthotropic plate,

YA APTCAL I Iw _ xy)  (10)
i peC 3axzayz 2ay4 = qX,y

3.2 Vibration of Plates

As a numerical example, the special orthotropic
laminate given in Kim's bookl) is considered,
Fig. 1.

This example illustrates the method of analysis.

The material properties are :

E, =67.36 GPa, E; = 8.12GPa

Glz =3.0217GPa
E-
= -—— =0.0328
Va1 = Viz E,

Viz= vam+Vfo = 02720

The stiffnesses are

L////IO°
e = /QO!

X

tti=6=t3=0.005m,a=b=1m
Fiber Orientation : 0°/90°/0°

Fig. 1. Specially Orthotropic Laminate

Aij:;(_dij)k - (hy—hk-), in N/m (11)
1 & = , )
Bjj = 37 E (Qi) - (x—h’),in N (12)

12 = 3 3 .
D“=3_k§=:. (Qi - (h—h’_),inNm  (13)

and obtained as

18492 627 O
D@,j)=| 627 2927 0O |(N—m)
0 0 849
720.67 3343 O
A(i,j)=1| 3343 42179 O |(MN/m)
0 0 4533

B(i,j) = 0 from symmetry.
The influence surfaces are calculated by

mnx nnx

w(x,y) = i i Wi * Sif) +sin (14)
m=1 n=}{ a b
where
P/
D (™ 42001420 [ +D ] "
“E ( 12 66)(—‘,; F ZIF’
in which
po= 4(1) mné nzn

i . ’1 16
b sin . sin b '( )

From Eqn (4),
w(i,j)(1) = W(i,j)(1)

where W is the maximum amplitude, (i,j) or
(x,y) is the point under consideration, and (1) after
(i,j) indicates the first assumed mode shape. The
first mode shape is assumed as
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10 20 30 20 10
20 30 40 30 20
w(i,j)(1) = (30 40 50 40 30
20 30 40 30 20
10 20 30 20 10

By Eqn (5) which is

F(ij)(1) = +m(i,j) [P wi,j)(1)
where

m(i,j) = the mass at (i,j) point = ph(i,j) AxAy,

in which 4x and 4y are the mesh sizes in the x-
and y- directions, respectively, p is the mass den-
sity at (i,j), and h is the thickness of the plate at
(i,)), and @(i,j)(1) is the “first” natural circular fre-
quency at (i,j) point, F(i,j)(1) is obtained in terms
of axi,j)(1).

Substituting F(i,j)(1) into Eqn (6)

k.|
w(i,j)(2) = 2 AG,j.k.1) - F(1,j)(1)
=3 AG KD - {+m(k,]) -
[axi,)(D]* - w(k,)(1)}
where 4 (i,),k,l) is the influence surface, i.e., the
deflection at (i,j) point caused by a unit load at all

of (k,) points, w(i,j}(2) can be obtained.
From Eqn (7)

w(i (1) / w(i,jp)(2) =1
from which, one can obtain
@(2,2)(1)=1512.68/ /m(2,2)

The calculation is carried out at all points (i,j)
and

o(i,j)(1) = (1913-1512) / /m(i,j).

Since the range of @(i,j)(1) is too large, one
more cycle is proceeded. For axi,j)(2) to be used
for F(i,j)(2), the absolute numerics of &Xi,j)(2) are
used. '

Then

@(i,j)(2) = (1586.5—1631.3) / { m(i,j)
@(2,2)(2) = 1587/ / m(2,2).

Proceeding further,

axi,j)(3) = (1592.5-1598.0) / | m(i,))

@(i,j)(@) = (1593.6-1594.3) / | m(i,j)

aX2,2)(3) = 1593/ { m(2,2)

ax2,2)(4) = 1593.6 / { m(2,2).

The result by the energy method is

©=15937//m

3.3 Application to the Subject Problem

In order to apply the presented method to the
subject problem, the first step to take is obtaining
the influence surfaces. Any method can be used.
Levy solution with sine Fourier series terms to the
simply supported edge direction may be good.

Since the “free” edges may have integrally built
in ‘beams”, resulting to change of “free” edges to
elastically supported edges, the F.E.M. program
ARGOL is used for this illustration.

In the ARGOL program, element is used the 4-
node sandwich plate element. It is based on
Mindlin plate theory. Basic assumptions include :

1) All displacement are small w. r. t. the plate
thickness.

2) Each ply of the laminate is linear elastic.

3) Through the thickness stress is assumed zero.

4) The line normal to the surface does not have

CASE A CASE B

Fig. 2. Plate under Consideration
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to remain normal after deformation.

5) Transverse shears are included for the sand-
wich core only.

6) The face sheets are assumed to obey thin
plate theory.

Each node has five degrees of freedom :

1) Two perpendicular in-plane displacements
(u, v).

2) One out-of-plane displacement (w).

3) Two out-of-plane rotations (ry, 1y).

The accuracy of the natural frequency is propor-
tional to that of the inverse of the square root of
the deflection. The accuracy of using this F.EM.
program can be checked by comparing the deflec-
tion obtained by this method with that obtained by
the other method.

For the plate with four edges simply supported,
for which “exact” energy method solution is avail-
able, three significant figures by F.E.M, are same
as those obtained by the energy method, for
almost all values of c=b/a, Fig. 1. The beam anal-
ogy has similar result for c>7.

For c=4, two figures are equal. For two edges
simply supported and the other opposite edges
free, the beam analogy and F.E.M. solutions have
three significant figures equal when ¢ >5.

Table 1. @, ph, c=a/b=1(a=1m, b=1m}), P = N a b q, q =phg
CASE A : g Neglected, CASE B : q Considered

N CASE A) CASEB | w(B)/ aXA)
(rad/sec (rad/sec) (%)

0 1358.161 | -

1 763.3866 686.2808 89.89

3 440.7415 424 8031 96.38

5 341.3969 333.8809 97.79

7 288.5330 283.9673 98.42
10 241.4040 238.7175 98.89
15 197.1056 195.6378 99.26
20 170.6984 169.7433 99.44

For the plate with all edges fixed, the beam
analogy solution has differences less than 0.6%
when c>3.

For this illustration, a concentrated load P=N a
b q at the center of the plate is added to the uni-
form load q. The influence of the concentrated
attached mass is studied by increasing N for two
cases, namely, CASE A=q neglected, CASE b=q
considered. where N is real number. The result is
given in Table 1. Figure 3 is Natural frequency for
each cases. Fig. 4. is Natural frequency ratio.

800
-
10
\
§ 600 —|
o) N ~——+—— CASE A : qneglected
§ T ' - - ©- - CASEB:qConsidered
g
&
B o400 ]
3
B
2
200 -

—a—— CASE BICASEA’

Natural frequency ratio (%)
L

Fig. 3. Natural frequency for each cases

Fig. 4. Natural frequency ratio (%)
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4. CONCLUSION

In this paper, the simple and accurate method of
vibration analysis developed by D. H. Kim is pre-
sented with detailed illustration.

Numerical illustrations for beams and plates are
given and it is proven that the presented method is
simple to use but extremely accurate. The bound-
ary condition can be arbitrary. Both stiffness and
mass of the element can be variable. One can use
any method to obtain the deflection influence
coefficient. The accuracy of the solution is depen-
dent on only that of the influence coefficients.
One should recall that obtaining the deflection
influence coefficients is the first step in design
and analysis of a structure. The merit of the pre-
sented method is that it uses such influence coeffi-
cient values, used already for calculating deflec-
tion, to obtain the natural frequency of the struc-
ture. When the plate has concentrated mass or
masses, one can simply add these masses to the
plate mass and use the same deflection influence
surfaces to obtain the natural frequency.

This method is applied to the special orthotropic
plate with two opposite edges simply supported
and with the other opposite two edges free, Fig.1,
2. Such plate is the case of the most of the simply
supported bridges.

Several laminates with certain orientations
reduce the three Partial differential equations to
one equation for the special orthotropic plate.
When advanced composite materials are used for
bridges, buildings, and other civil constructions,
the design must have fiber orientations other than
0° and 90°. Analysis of such laminate is very much
complex because of the existence of three simulta-
neous Partial differential equations. The laminates
given in this paper have the advantages of such
fiber orientations but can be analysed by simple
method used for the special orthotropic orienta-
tions. Further simple method can be used for such
laminates. Such method is given in Reference[1].

The presented method can be applied to such

laminates as well as concrete bridge/decks, and
the girders and cross-beams systems.
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