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Suboptimal Robust Generalized H, Filtering
using Linear Matrix Inequalities

Won-8ang Ra, Seung-Hee Jin, Tae-Sung Yoon, and Jin-Bae Park

Abstract : The robust generalized H, filtering problem for a class of discrete time uncertain linear systems satisfying the sum
quadratic constraints(SQCs) is considered. The objective of this paper is to develop robust stability condition using SQCs and
design a robust generalized H, filter to take place of the existing robust Kalman filter. The robust generalized A, filter is designed
based on newly derived robust stability condition. The robust generalized H , filter bounds the energy to peak gain from the
energy bounded exogenous disturbances o the estimation errors finder the given positive scalar ¥ . Unlike the robust Kalman
filter, it does not require any speciral assumptions about the exoBenous disturbances/Therefore the robust generalized H, filter
can be considered as a deterministic formulation of the robust Kalman filter. Moreover, the variance of the estimation error
obtained by the proposed filter is lower than that by the existing robust Kalman filter. The robustness of the robust generalized H,

filter against the uncertainty and the exogenous signal is illustrated by a simple numerical example.

Keywords : robust generalized H, filter, sum quadratic constraint, linear matrix inequality, S-procedure, robust Kalman filter

I. Introduction ]

During the last 40 years, the celebrated Kalman filter has
been used widely in many engineering areas. But it is now
very well known that the Kalman filter has some drawbacks,
that is, the Kalman filter requires the following assumptions
which are not practical in realistic applications [1]:

* system models are perfect, i.e., there must be no para-
meter uncertainties

* spectral properties about the exogenous disturbances are
known, i.e., they must be white Gaussian

Unfortunately, in the cases where the above conditions do
not hold, the Kalman filter shows degradation in estimation
performance and, in the worst case, it may even diverge.
Recently, various robust filtering schemes, which have accept-
able performance in the presence of modeling errors, have
been developed. The robust Kalman filter (or robust H, filter)
and the robust I, filter are representatives of robust filtering
schemes.

The robust Kalman filter has been under consideration,
which are to remove the first assumption mentioned above,
and some results are already available [11,14]. However, it
still requires a priori statistical information about the
exogenous disturbances. And, it is also noted that, in nominal
cases, its estimation performance is not as good as the
standard Kalman filter.

On the other hand, the robust A, filter does not require
statistical knowledge about the exogenous disturbances, ex-
cept that they are energy-bounded signals. Of course it was
designed for the cases that there exist parameter uncertainties.
The robust H,, filter, which minimizes the energy-to-energy
gain from the exogenous disturbances to the estimation errors,
is able to guarantee the robustness against worst-case distur-
bances and modeling errors. But it has been indicated that the
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robust A, filter was overly conservative by considering the
whole uncertain situations. Namely, the robust H,, filter may
not have better performance in H, sense than the robust
Kalman filter in [8]. Moreover, if a priori statistical informa-
tion about the exogenous disturbances is partially available,
the robust A, filter can not come up with the robust Kalman
filter.

Therefore the development of a new robust filter, which
performs well and guarantees robustness against the uncertain
disturbances and parameter uncertainties in system models, is
necessary. This motivates our robust generalized H, filter. The

generalized /, norm, so-called I, —I_ convolution operator

norm, was introduced by Wilson in the late 80's [13]. Using
this operator norm, the generalized H, filtering pro-blem was
already considered in [6] for nominal systems. This filter was
designed to minimize the energy-to-peak gain from the
exogenous noises to the estimation errors. Therefore, the
nominal generalized H, filter does not require any statistical
assumptions about the exogenous noises. Furthermore, if a
bound is known for the energy of the disturbance, the
generalized H, filter can be used to bound the state estima-tion
error amplitude against excessive dynamic excursions. Note
that, in the single-input single-output(SISO) system, the H,
norm of the error dynamics is exactly the same as the
generalized H, norm [13]. It is the reason why we can inter-
pret the generalized H, filtering problem as a deterministic
formulation of the Kalman filtering problem [6]. But the
robust generalized H, filtering problem to guarantee the
robustness in the presence of parameter uncertainties was not
considered in [6].

The objective of this paper is to design the robust
generalized H, filter to take place of the robust Kalman filter
for the emphasis on the performance. By considering
generalized H, norm, the proposed robust generalized H, filter
can relax the second assumption on the knowledge of the
spectral properties as well as the first assumption mentioned
above. To describe a class of discrete time uncertain linear
systems to be estimated, we use the sum quadratic constraints
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(SQCs) which can cover the various uncertainties [10]. This
type of uncertain system modeling was used in [7] for the
robust A, filtering problem. Generally, the standard norm
bounded uncertainty description has been used to deal with the
various filtering problems. However, in this paper, we use the
SQCs to design a more practical robust filter for general
uncertain systems. To develop the robust filter, first we derive
new robust stability condition using SQCs and S-procedure.
We can not find this robust stability condition in other
literature to date. This is one of the main contributions of this
paper. And then, the robust generalized H, filtering problem is
formulated by two QMIs. Solving these QMIs, we can obtain
the generalized H, filter which has better performance than the
existing robust Kalman filter.

This paper is organized as follows : In next section, the
preliminaries to solve the robust generalized H, filtering
problem are introduced. Then, in Section 3, the robust
generalized H, filtering problem is formulated as several
quadratic matrix inequalities(QMIs) which can be converted
into LMIs. Then, this convex optimization problem is solved
by using the solvability conditions of the QMIs. In Section 4,
the simulation results are depicted. Finally, in Section 5, we
give conclusions.

IL. Preliminaries
1. Sum quadratic constraints and S-procedure
The SQCs are discrete version of the iﬁtegral quadratic
constraints(IQCs). Therefore they have same properties as
IQCs. In the 1960-70's, the -SQCs were used to treat the

stability problems in advanced and complex nonlinear systems.

Also, it is very well known that the SQCs can be used as
general tools to specify uncertain linear time-invariant
dynamics, unmodeled dynamics, constant or time varying
signals, delay, and nonlinearities, etc. [9,10]. Furthermore, by
using S-procedure, we can convert the SQCs to the combined
LMls. Because efficient algorithms are already available for
the convex optimization problem, it seems that we can solve
many robust filtering problems via SQCs and S-procedure.
The SQCs in the state-space can be classified into the
following two large groups.
Given the state-space realization :

x(k +1) = Ax(k) + B, w(k) + B, v(k)

Soft SQCs
Zo-(x(k),w(k),v(k)) >0
k=0
Hard SQCs
T
Za(x(k),w(k),v(k)) >0, T20
k=0

where o‘(-) is a quadratic form and w(k),v(k)e 12[0,00). In
contrast to the soft SQCs, the hard SQCs will be nonnegative
at any moments. Therefore, the soft SQCs are more general. S~
procedure was introduced by Yakubovich to treat multiple
quadratic constraints. Many researchers pointed out that S-

procedure may be conservative. Nevertheless, it is very useful
tool. By using S-procedure we can easily handle the SQCs and
combine them with other LMI constraints [2,7,9]. The fol-
lowing lemma can be found in a lot of related literature, e.g. [2].
Lemma 1 (S-procedure : Non-Strict Inequality Case) : Let

Fy,A F, be quadratic functions of the variable £ e R™ .
FOA (TG 4y, i=0A,p

where T; = TiT - The following condition on  Fy,A ,F,
Fo(§) =0 for all § such that Fi({)20, i=1LA,p

holds if there exist 71 2 0,A \Tp 2 0 such that

2
Ty ug howily,
T - Ti| T =Vv.
oo Vol 4 MM

When p =1 or functionals F; are affine, the converse holds.

2. Generalized H, horm
Consider the following systems.

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)
where the exogénous noise u(k) is zero mean whité

Gaussian,

In H, theory, the performance criterion is originally to
minimize the mean square error and other important signals
which were to be protected against excessive dynamic ex-
cursions. From standard results in [3],

minimize ”G(z)[(2 = minimize tracel/z(CQC T4+ pp” )

where G(z) is the transfer function from input signal u(k)
to output signal y(k) and Q>0 satisfies the following
Lyapunov equation.
A04" +BBT =0
If we assume that the input signal is an unknown /, signal
and the controlled output is a bounded /,, signal, to minimize

the mean square error is the same as to minimize the
maximum deviation of the controlled output in SISO discrete
time systems [13]. But the above statement is not established
in multi-input multi-outputMIMO) systems. In MIMO
systems, if we want to minimize the maximum deviation of
the controlled output, performance measure is defined by
minimizing the following generalized H, norm [12,13].

. I,
minimize sup =
wel—10} [,
= minimize lim (tmcel/ 2[(CQCT +DDTy* ])/k
—mw
= minimize f(CQcT +DpT )

. . 1/2
where the nonlinear functional f (): \ azx() or dnfax(-).
Amax denotes the maximum eigenvalue and d,, denotes

the maximum diagonal element. If we are to deal with a
specific application the peak of whose state or controlled
(filtered) output must be bounded under the desired level, we
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can design an appropriate controller or filter by using the
above result.

1I1. Robust genéralized H, filtering problem
1. Problem statement
Consider the following uncertain discrete time linear
systems [7]. '

P
x(k +1) = Ax(k)+ Byw(k) = Y By, (k)

i=]

y4
¥y = Cx (k) + D)+ > Dy &y (D
i=1

z(k) = Lx(k)
where x(k) e R" is state, w(k)e RY is assumed to be
energy bounded noise, y(k) € R™ is measurement output,
z(k) e R is an arbitrary linear combination of the states, and
& (k) e " is uncertain input satisfying the following SQCs.
The given matrices have appropriate dimensions.
T T
DM@l < D Bt + By (eywie) + By (0 (2
k=0 k=0
foralli=LA ,p

where T is the final time and £(k) = (&] (k)4 &5 (01" -

The robust generalized A, filtering problem associated
with the system (1) and the SQCs (2) is to find a stable full-
order filter of the form

2k +1) = Gi(k) + Hy(k) 3)
5(k) = Ja(k) + Ky (k)

such that

w Mo, @
wel, - {0} ”w”l2
where y is a given positive scalar and e=z—z. To solve

the suboptimal robust generalized H, filtering problem, we
convert the uncertain system (1) to the following general form,

k0] T4 B By
sy VB By Byl (5)
(k) C Dy Dy £
2(k) L 0 0

where
By=[By A Byl E=[E; A ET,
By =[Ey A BT, E=[E) A E,T,
Dy =[Dy; A Dyl

and the uncertainty output ¢(&)y=[¢/ (k) A (117

2. Robust generalized H, filter design
Robust generalized H, filter design is based on the robust
stability condition for the given uncertain error dynamics. That

is, e(w0) = L(x(c0) — i(0)) — 0 for all admissible uncertain-

ties. So far, the necessary and sufficient condition for robust

stability is difficult or almost impossible to find. Therefore, we
derive only the sufficient condition for robust stability in
robust generalized f, filtering problem using SQCs and well-
known S-procedure.

Theorem 1 (Robust Stability) : The uncertain system (5)
is robustly stable if there exist a matrix P >0 and a diagonal

matrix Q>0 which satisfy the following quadratic in-

ABzISOABzT<ISO (6)
El Ello Ol & E3 0 0
Proof : To check the stability using Lyapunov theory,

consider the uncertain system (5) and SQCs (2) without w(k) .
Let the Lyapunov function candidate for uncertain system (5) be

equality.

p k-l
V= WP 0+ D> o [ + B off -l 0l

i=l =0
where the arbitrary scalars 7; >0 should be optimized.
According to the Lyapunov theory, the uncertain linear system

is asymptotically stable if the following inequality holds [4].
AV = xF (k+ )P Ik + 1) — xT ()P x(k)

P
> a|mao+ gl -lawl ) <o

i=l
(We can also derive the above inequality by S-procedure, in
Lemma 1:if &) <|Eyx(k) + By [21)

Rearranging the above inequality, yields
[xac)f oo | [a7 BB o [A Bz} [x(k)}o(ﬂ
£k 0 07| |BY ET| o O7V| E Es])&B
where a diagonal matrix ™' > 0 is defined as

00
[5 - ]
0 -~ 0 I' (8
Now, taking the Schur complement of (7) we can obtain (6).

From Theorem 1, we can derive the following inequality
related to generalized H, performance measures.

Corollary 1 (Robust stability) : If there exist a matrix
P>0 and a diagonal matrix Q>0 which satisfy (6), there
exist a matrix P >0 and a diagonal matrix Q > 0 satisfying

the following inequality.

48 315 % %4 B BT TP o
2 7o oo L I )
E1E352001E1E3E2 0 0

Proof : Equation (6) implies the following inequality for
sufficiently small &>0.

4 Bz} 7 oll4 BT [B1BT [F o
~ +& < ~
B Es|l0 QB Es By LBy 0 0
Dividing both sides by ¢ and replacing l13, lé by P, Q,
¢ &

respectively, we have (9).
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Given the system (5), the robust generalized K,
performance is defined by the following Lemma 2.
Lemma 2 : (Robust generalized /, performance) : The

robust generalized H., gain of the system (5) is under the
given positive scalar y if the matrix P >0 satisfies the

Jollowing matrix inequality and D, =0.
crc T+ p,DT < y?1 (10)

where, the matrix P > 0 satisfies robust stability condition (9).
Proof : See [6], [15] and references therein for more details.
The robust generalized #, filtering problem is formulated

by some QMIs. To solve these QMTIs, it is necessary to check

the solvability conditions for a general QMI as follows :
Lemma 3. : (Solvability conditions of general QMI :
Efimination Lemma) : Let matrices ©, I', A and R >0,

S >0 be given, and the solution to the following QMI be F .
(@+TFAY R(® +TFA)< § (1)

Then there exists a feasible solution F to the OMI (11) if
the following conditions are satisfied.

A S -0TRA™T >0 (12)

rte'-es'0")ri’ s o (13)

where, AL denotes the left annihilator of A, i.e., a matrix
with the following properties; the null-space of A" is equal
to the range space of A, N(AT)=R(A), and 4 4T >0.

Note that, for a given A, A% is not unique, but throughout
this paper, any choice is acceptable.

Proof : See [6] and references therein for more details. W

Now, the robust generalized H, filtering préblern can be
solved by considering the robust stability condition and the
generalized H, performance condition of the error dynamics.
The error dynamics (14) can be obtained by combining the
uncertain system (5) and the filter equation (3).

x(k+1) 4 0 B B, x(k)

Le(kﬂj B [HC G} l:HDJ [HDJ L%(k)} (14)
¢y || (B 0] E,  Ey || wk)
e(k) [L-kC -J] -KD; -KD, || £k

From Corollary 1 and Lemma 2, we can obtain two QMIs
(15), (16).

Corollary 2 (Two QMIs in robust generalized H, filtering
problem) : The robust generalized H, filtering problem is to
find the filter matrices G, H, J and K which satisfy the
Jollowing two QMIs.

ﬂ,fc ol ] Lﬁ;ﬂF 0 3}
g o] & K 0 7
<7 o]

0 (15)
[[L-&Cc -J] KDI][S ?:|[[L—KC —J] kDT <321

Lie &l L] L)

[E, o E;

[z-xc -J] KDI]B ﬂ[[Ld{C -] kp,F <21 (16

Proof : This corollary can be easily verified by using (9),
(10), (14). From the robust stability condition (9) of the error
dynamics (14), we have (15). And we need (16) for the error
dynamics (14) to satisfy the generalized H, performance
condition (10).

Remark : In the case D, #0, we can obtain the robust
generalized H, filter by letting K equal to zero. For the
generalized H, performance measure of the given error
dynamics to exist, KD, must be zero by Lemma 2. However,
this choice limits the feasible set for the filter to exist, it is
reasonable to assume D, = 0. Henceforth, we use D, =0.

We can obtain the following results from the solvability
conditions of QMIs (15), (16).

Theorem 2 (Solvability conditions of the robust
generalized H, filtering problem) : There exist y -suboptimal

robust generalized H, filter matrices F,, F, in'Corollary 2 if

there exist matrices X, Z>0, and a diagonal matrix

071> 0 satisfying the OMIs (17), (18), (19).

X-ATy4-ET0'"s, -A"XB,-E[Q'E, -4"xB-E'Q7'E,
~BX4~EJQE, Q7' -BIXB,~E[Q7'E, -BIXB-E]Q7'E, |>0
- Bl x4- EJ07'E, -BlxB,-EYQ7'E;, 1-BTxB-E]Q7'E,

a7

L LT
T\ z-Az4-E o', -AzB,-E0E, -4zB-E Q7% |[C7

0 || -Blz4a-EfQ7 s, 07'-BizB,-E[Q'E, -BlZB-EIQ7E, | 0| >0
of || -B{z4-Ej0°E,  -B{28)-EQ"Ey  1-B{zB-E}QE, | D

(18)
L 1 AT
IS
0 7 L2 (19)
Proof : QMIs (15), (16) can be converted to the following
general QMIs.

(@ +RAA) R (0, +TiRA )< S (20)
(@3 + TR0, ) By (0, + Ty FyA, ) < S, (2]
where
4T o B 0o.cT ol
0 0 0 I 0
0= r T L= Ap=|1
BY 0 E 0 0
T T T 0
Bl 0 El 0 D
P 00
Ri={0 Q0| & {P 0} F [GT}
| = 1= 1=
0 T
0 0 I € 7
r 0 -cT (22)
@={0| T,=|-I o Ay=1
0 o »of
PO ) Jr
Ry, = Sy =y°T F, =
2 [0 ]:| 2=7 2 [KT}
Y I zZ Z
P={ i 12} P‘I:{ i 12} ylox
Y Ty Ziy Iy

Using the Lemma 3, we can obtain the following solvability
conditions for QMI (21).
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AT (S, -0 R, ©,) A5 >0 (23)
T3 (R -0, 85'0D)n T >0 (24)

Noting that A% =0, QMI (23) can be ignored. Then it is

easy to verify that (24) is equivalent to (19). Also, from the
solvability conditions of QMI (20), the following matrix
inequalities must hold.

AP (s -0l R ®)ATT >0 (25)

It R -0, s7'eN it > 0 (26)

We can obtain (18) by substituting the matrices in (22) for
(26). In the same way, we have (27) from (25) using (22).

At this point, we need to check whether the QMIs (18), (19),
and (27) are jointly linear in the matrix variables, respectively.
The QMIs (18) and (19) are jointly linear in the matrices Z
and Q! whereas the QMI (27) is jointly linear in the
matrices ¥ and (. Therefore, it is difficult to find the
feasible solution satisfying the QMI (18), (19), and (27)
because these QMIs are not jointly linear in ¢ . To make the
suboptimal robust general- ized A, filtering problem tractable,
QMI (27) must be changed to appropriate form. To this end,
let the outer factor of QMI (27) be

e Y - AYAT Yy -AYE - B,QET -BE] |07
I % Y 0 Il >0
0| |-EYAT -E,0B] ~-E,B] 0 Q-EYE -EQE! -E,EL |0
) 27
o 100
I :[ } @3
007
|0
Then, we can convert (27) to
_ Y00 T
Yy 0| [4 B, B A B, B
- 000 >0 (29)

Taking Schur complement, (29) is transformed to

700 4 B, B[y 4 B, B
0o glo _]: 2 1:| Y 0>11: 2 1:|>0 (30)
0 0 I B EE||0 0| BB

Finally, replacing Y -1 by X ,wehave (17). |

Now, we can find the feasible solution to the QMIs (17),
(18), (19) using the interior point algorithm [5] because those
QMIs are jointly linear in X, Z, and Q. The only to be left for
the design of suboptimal robust generalized H, filter is to
solve the two QMIs (15),(16) in Corollary 2. Substituting
X,z,and Q7! for (15),(16), matrix variables of QMIs (15),
(16) reduce to F;, F which will result in the robust generalized

H, filter.

IV. Numerical example
A simple example is presented to analyze the performance
of the robust generalized H, filter. The (SISO) plant model is
borrowed from [14].

60 T . v v . T y T
———  Robusi Generalizad H2 Filter I
....... Robust Kalm an Fliter l/
50 kf - —~ Nominal Kalm en Fliter 7
¥
40} 7
s W
/
g 30+ S/
5 /
8 /.
= M I
_____ .
20 e i
~ Y
~o . /"
10F e ) 1
of -
- 08 -06 -04 02 0 02 04 06 08 1

param eter uncertainty delta

Fig. 1. Estimation error bound — case 1.

60 T T T T B T r—r T
Rabusi H2 Filter ,J
....... Robual Keiman Fitter /
sok e Nomine) Kuim an Fijer if’
. .
N
. i
40} ~ i
.
N "

£ aof > /
5 /
j=4 N v
o s

20F N - /

. !
. /
N ;
sof ety y
B! ¥
4
CF
" L L

4 08 06 -04 02 0 02 04 06 08 1
param eter uncertainty delta

Fig. 2. Estimation error bound — case 2.

x(k+1) {? ?'S}x(k)JrLﬂA[o 0‘031x(k)+{ 16 g}w(k)
wky=[-100 10}(&)+[0 1]wik)
2(k) = Lx(k)
where the parameter uncertainty A satisfies ||A|<1.
We consider two cases; L=[10] and L=[01]. Given
¥ =10.6581, we can obtain the following robust generalized 7,

filter by (15), (16) and their solvability conditions in Theorem
2.
Case1: L=[i 0]

00502 0.1125 ~0.0001
¥k+1)= x(k) + k
e [0.1283 0.2876}6() {o.oooo}y ®

2(k) =[5.9780 133969}k (k) —0.0088y(k)
Case2: L=[01]

R 0.1373 0.2769| . -0.0001
x(k+1) = x(k)+ y(k)
0.1547 0.3119 0.0000

2(k) =[50.7148 102.2785Jk(k) +0.0117y(k)

The performance of the robust generalized H, filter, robust
Kalman filter by L. Xie, et. al. [14], and nominal Kalman filter
are compared by the H, norm of the error dynamics as the
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function of parameter uncertainties. The results are depicted in
Fig. 1-2. The solid lines indicate the H, norm of the robust
generalized H, filter error dynamics. The dotted lines and
dashed lines show the Z, norm of the robust and nominal
Kalman filter error dynamics, respectively.

In Fig. 1, we can see that the proposed filter exhibits better
estimation performance for all admissible parameter
uncertainties than the other filters even in the nominal case
(A =0). Generally, if there are no parameter uncertainties, the
estimation performance of the robust filter is not better than
the nominal filter because its design objective is to maintain a
certain estimation performance. Therefore, the result in Fig. 1
is not common. This result may come from the dynamic
characteristics of the given error dynamics. Figure 2 supports
this assertion. ) : - ' 7

Note that in the simulation results, the estimation error
bound of the nominal Kalman filter increases abruptly, while
that of the proposed filter maintains a certain level less than
that of the robust Kalman filter in [14]. In addition, the
proposed filter is designed to bound the peak of the estimation
errors in worst cases without any spectral assumptions on the
exogenous noises. Therefore, it can relax the spectral assump-
tions which have been pointed out as the drawback of the
nominal and the robust Kalman filter. '

V. Conclusions

So far, many researchers have studied the robust Kalman
filtering problem to achieve the robust performance against
parameter uncertainties, but these filters have a disadvantage
inherently; the robust Kalman filter assumes that the
exogenous noises are white Gaussian,

In this paper, we have developed a suboptimal robust
generalized H, filter using linear matrix inequalities, which
can overcome the disadvantage of the robust Kalman filter by
considering the generalized F, performance measure. The
proposed filter bounds energy to peak gain from the
exogenous noises to the estimation errors. Therefore, the
robust generalized H, filter achieves robust performance

against parameter uncertainties without a priori statistical

information about the exogenous noises. The robust
generalized H, filter is designed based on the newly derived
robust stability condition by SQCs and S-procedure. And then,
We have shown that, given y >0, the robust generalized H,
filtering problem can be formulated by two QMIs and its
solvability conditions. Numerical results have shown that the
variance of the estimation error obtained by the proposed filter
is lower than that by the existing Kalman filter in the presence
of parameter uncertainty.

The proposed filter can be applied to many applications.

Since the proposed filter bounds the peak of the estimation
errors in worst cases, it is useful for systems whose per-
formance is affected by the abrupt increase of the estimation
errors such as target tracking systems, navigation systems, etc..
As well, it can be applied to many realistic applications
because it is designed for the uncertain linear systems
described by SQCs which can cover various uncertainties,
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