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Recursive Optimal State and Input Observer for
Discrete Time—Variant Systems

Youngijin Park and J. L. Stein

Abstract : One of the important challenges facing control engineers in developing automated machinery is to be able to
monitor the machines using remote sensors. Observers are often used to reconstruct the machine variables of interest.
However, conventional observers are unable to observe the machine variables when the machine models, upon which
the observers are based, have inputs that cannot be measured. Since this is often the case, the authors previously
developed a steady-state optimal state and input observer for time-invariant systems [1], this paper extends that work
to time-variant systems. A recursive observer, similar to a Kalman—Bucy filter, is developed. This optimal observer
minimizes the trace of the error variance for discrete, linear, time—variant, stochastic systems with unknown inputs.

keywards ' state and input observer, Kalman-Bucy filter, discrete time varying system

1. Introduction

Stein and Park [2] observed that, in many model-
based machine monitoring situations, insufficient
knowledge of the machine or machine process exists
and that models of these systems have unknown inputs
or disturbances. Therefore, a classical state observer
cannot be used to estimate the states and inputs when
the unknown inputs cannot be measured. They proposed
a simultaneous state and input observer (SSIO) based
on minimizing the number of measurements (both state
and input) required to observe all the states and inputs.

In a subsequent paper [3], they showed that by
relaxing the requirement of using only a minimum of
measurements, a closed-loop state and input observer
(CSIO) could be developed. This solution allows a
designer to tune the observer dynamics to meet some
performance criterion. They also developed a steady-
state optimal, state and input observer (OSIO) [1] for
discrete, time-invariant systems that minimizes the
effect of system and measurement noise on the
estimates. This is particularly important for an input
and state observer because the observer is acausal and
measurement noise can strongly influence the input
estimates, which are, in part, based on derivatives of
the state measurements [2].

While the class of state and input observers
developed by Stein and Park have many applications in
machine monitoring and other areas where determining
inputs or disturbances to a system is important, they
only apply to systems that can be represented by linear,
time-invariant models. The purpose of this paper is to
develop a state and input observer for discrete, time-
variant, stochastic systems with unknown inputs.
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This observer is recursive in nature, as is a Kalman-
Bucy filter [4] for time-variant systems. The observer
gain is chosen to minimize the effect of system and
measurement noise on the estimates of the state and
input. This is achieved by minimizing the trace of the
estimation error variance matrix at each time step. The
observer structure is identical to the observer developed
in OSIO [1] except that it is in recursive form.

1. Notation

Singular value decomposition and the generalized
inverse (Moor-Penrose inverse) are briefly explained and
the notation is given as follows. This notation is used
without further explanation throughout the paper.
1. Singular value decomposition

Any pxvy matrix (-), whose rank is «, can be
decomposed as follows:

(D)=UZVot=1Ucya( ) Vi,

where
Vio=[1Vey o))
Vio=LVey Vil

20=(5)

U (.y: left singular matrix of matrix ( -), U(.,eR**#
V(.y ' right singular matrix of matrix (-) V.,eR””
> (.y ¢ singular matrix of matrix (-), = ,eR*"”
1U¢.y ¢+ singular matrix of matrix (-), U(.,eR***
Uy + null space matrix of matrix (- ), ;U ,e R** ™9
V. @ range space matrix of matrix (), \V(.,eR"®
2V(.y: null space matrix of matrix ( +), ,V(.,eR*** ¥

ax o

n

The left and right singular matrices are orthogonal
matrices and are not necessarily unique. The nonzero diagonal
elements of a singular matrix are called singular values.

o¢.y ‘ positive definite diagonal matrix, o(.,€R
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2. Generalized inverse

A generalized inverse (Moore- Penrose inverse; [5])
can be defined using the singular value decomposition
technique as follows:

()T=V D)+ U '=1Viho) UG @)

-1
where Z(.>+=<g('> 8) e RU*

(+)" : moore-Penrose inverse of matrix
(), (-) eR™*

III. Analysis
1. System model
A class of linear time variant discrete systems can
be represented by the following equations:

Xpe1=Apopt BrUpt wyy 3
yie= Cexp +wy 4)
Yor= Dyup + wo )]

where
X, . system state at time step &, x,=R”
Uy, . system input at time step %, u,<R™
Vi | State measurements at time step &, v, €RT
Yop + input measurements at time step &, vy, €R?
Woe: system noise at time step k, wy, €R”
Wy, state measurement noise at time step £,
wi R’
w9' Input measurement noise at time step £,
Wy ER?
A, system matrix at time step k
B, . system matrix at time step k
C, . system matrix at time step k

D} . system matrix at time step k
wr=| Wék wik Wék]t

The following assumptions have been made. First, the
noise vector wy is assumed to be a zero mean, Wwhite,
uncorrelated random sequence whose variance IS
represented by R, as follows:

R, 00’
0 R, 0
0 0 R,,

(6)

Ry=E[ w, Wtk]:

where
Ruo= Elwywi;] @ positive semi-definite matrix
R,y = Elwywi] @ positive definite matrix

Rup= Elwyws;] © positive semi-definite matrix

Second, the A,, By Cp, D, and R, matrices are as—
sumed to be known. The B, matrix is of full column
rank and the C, and D, matrices are of full row rank

for all time step k. If these matrices are rank deficient,
then the order of input or output must be reduced to

prevent rank deficiency. The null space of the D,
matrix is fixed for all time step k.
2. Existence condition

One of the sufficient and necessary conditions for the
existence of the discrete observer is as follows:

NkL:[CkBk—12VD]+CkBk»1 2Vp=1I,—, )

where I,-, : (m-g) X(m-g) unit matrix

This condition is the same as the one of the necessary
and sufficient conditions of CSIO [3] and OSIO [1] and
can be derived in a similar manner. This condition
dictates the necessary measurements to estimate states
and inputs of the systems. This can be satisfied if and
only if the matrix C,B,_;12Vp is of full rank for all
time step k. Note that the stability condition (detecta—
bility condition in CSIO and OSIO) is not presented.
However, the sufficient condition for the asymptotic
stability similar to that of the Kalman-Bucy filter [7~9]
can be derived. This condition is not further inves-
tigated in the paper because of its little practical impor—
tance. The stability of the stochastic observers such as
the Kalman filter is usually examined during the
recursive calculation by monitoring the error covariance.
3. System equation decoupling

The system equation (3) can be decoupled into two
equations one of which does not depend on the input
#;. This can be done by premultiplying (3) by an

mvertible matrix E, :
Ek Xp+1— Ek Ak xk+ B’Z{k+ Ek Woe (8)

+
where E,= [ %k ]

and by applying the following invertible transformations

Epi=1 Ve L]( if) <=$( if) =[ ZVM(IIV: LNk)] Epxr (9
B k

wp=[ D} ZVDJ( Yo ka) <:>( Yo~ wve) = [ Dk} up (10)

uh i Va

system equation can be represented by (11) and (12)
Vi1 = Newt ERAE L G Vil e+ Ly + No 1B wp+ Ny EgWy, (11)
Cre1= 2 Ve[ 1= LN | 1EGAER 1 Vit

3 V5v7e+1[f_ LNk—i-l]EKAkEl:—llLMkylk
+3 Vigr1ld— LNy 1B Df vy

+ 3 Vg1 [I— LNy ]
[E,— EAE LM, —B Dflw, (12)

Note that (12) does not include the input term u, A
detailed derivation can be found in Appendix I (11) and
(12) are an alternate representation of (3) and are
required for the observer derivation.

4. Observer derivation

It can be easily shown that state and input of the

system can be represented by sub-state vector ¢, and
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measurement vectors and noise vector as follows
(detailed in Appendix II):

( f{i) = Gyt Gyt Gavar+ Prépt Quup+ Rywprq (13)

where
GM:[ ExNLM, ]
- ZVDNkHEkAkEk_—I'lLMk'
GZk:[ o - +]
(I—3 VpNi 1B D
0
Gap=
3 [ zVDM/e+1]
Pk: [ Ek_*ll 2 VNk ]
- ZVDNk+1EkAkE;—11 ZVNk
Qk=[ 0 —E;4 LM, 0
~ 2 VoNer1Br 2 VoNen ERAE Y LMy — (I= 3 VN, 1 B)DY

[0 0 0
R.=
F [0 —2VpMas1 0

By defining a one-step-delayed (a posteriori) estimation
of state and input at time step k, as follows -

( ;k ) = Gyt Gownt Gawr1+ Pr Ty (14)
k

an estimation error ¢, and its covariance [I, can be

represented as

Ek:(xk)_< fk)=Pk(§k'—?k)+kak+Rkwk+1 (15)
Uy, Up

H,= E(é‘kEfa)

where sub-state (projected state) estimation error e

and its covariance ¥, are defined as

=8 T (16)

U,= E(e,el).
The authors [1] have shown that state and input
estimation error covariance, [I, is minimum when
sub-state estimation error covariance, ¥, is minimum

for non-recursive (time invariant) observer. However,
that is not the case in this paper, and a recursive
observer will be designed to minimize the state and
input estimation error covariance at any given time step k.

Assume that a priori sub-state estimate, ¢; and the
associated error covariance matrix, ¥ are known,

where ¥, is defined as
U, =E(e; e, H amn
where e, =&,— T}
Define a posteriori sub-state estimate ¢, and a priori

state estimate x;, from (9) as follows:

Cr=Tr + K 2Vi(y— Crity) 18)
k\k:E;—H(Z Vfwﬁi + LMy (19)

These two equations can be simplified as:

G=(U-KCOti +Kp o Vi (20)
where C o=, VigCiErli 2V

The sub-state estimation error e, can then be repre-
sented by the following equation (see Appendix II for
detailed derivation)

er= [7— K.C k]e; - Kkz Vfukwlk
=[I-K,C e, — K.F,w, 21)
where F,=[0 5 Vi 0]

and the estimation error covariance, ¥, is given by

U= Elewet) =1 — K, C ¥ [I-K,C 1"+ K,F R FiK}
=0 —K,C ¥, ~ ¥, C} K+ K[ C W, C 4+ FiR K, (22)

Note that state measurement noise w, and a priori

sub-state estimation error e, are assumed to be uncor—
related. This assumption will be validated later.

From (15), (16) and (22), the state and input
estimation error covariance can be represented as
follows (see Appendix IV for detailed derivation:)

;= P.¥; ' Pi+ QuR Q)+ RiR R
[ PKuS,— S PLKWS,— 2 = 5,38 (23)

where
SiSi= C ¥ C it FiRFi=C Ui C it 3 VinRur,Vine
Zk: [Pk w‘k_C’Z‘F QkaF;a][SkT]_l

Note that S,S} term is always positive definite because
the matrix Vi is of full column rank and state measure-
ment noise covariance R, is positive deﬁnite by definition.
Hence, the given factored form is possible. Also note
that all the terms in (23) are positive semi definite and
the first three and the last terms do not involve gain
K,.. To minimize the trace of matrix II,, optimal gain
matrix is chosen to make the forth term of  (23)
minimum as follows:

Kp=PZ S =P{ LS
=P [P,¥, C i~ QR FIS,SH ! (24)
= PP, C it QuRFILC W C ot FuRFi T

By noting the fact that P, is of full column rank,

the optimal gain can be simplified as follows:

KL, Cht TiQRFILC T CL+ FRF T (29)
where T,=[P}P,] 7P}
. This gain minimizes the mean square error of the

state and input estimation. Note that the matrix S, does

not need to be actually calculated to obtain optimal gain.
The error covariance matrix associated with the
optimal gain can be obtained by substituting (25) into (22):
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W=y — (T Cht TiURFDIC 1T C it FyRFITIC 1T,
— T CUC ¥ C it FuRWFI Wy Cht TR D'
(W C it ThQRFILC ¥, C bt FiR,Fi
(T Cht TR F =[I- K C W, + TWQuR FiKL (26)

The one-step ahead {(a priori) sub-state estimate
w1 is provided based on the a posteriori sub-state
estimate &, the decoupled system equation (12) and by
ignoring the contribution of the noise term.

1= 2 Ve[ I— LN 1 ELAER . Vi B
+o V?\%H[I_ LNK+1]EkAkEl:—11LMky1k
+3 Vigs1lI— LNy 1 1B Dy ya 27

The error covariance matrix associated with ¥z
is obtained by first forming the expression for the a
priort error.
ere1= Sur1— Cir =2 Viusi [I— LN | JE A 2 Vil 8 — T
+3 Vka+1[1_ LN}H—l][Ek— EkAkEk_—llLMk - B'D;L]wk
=A' et Hywy, (28)

where A=, Vigsr[I— LN 1ELAEZ s Vi
Hy=3 Vg1l I~ LN, L E,— E ALE2 LM, — B Dy

¥, can then be expressed as follows by using (21)

and the assumption that w, and e, are uncorrelated:

T =Elepr el
=A L OA M R HA A FepwdHL+ HoF(wpeh) A'L(29)
=AWUA G HRH— A (KOG F R JH— HiRFIEGA'

From (21) and (28), it is obvious that state measure-
ment noise w,+; and g priori sub-state estimation error

epr are uncorrelated. Hence, the assumption that w;
and e, are uncorrelated is valid if the initial estimation
error e, is chosen to be uncorrelated to the initial noise
wy.

By using (25), (20), (26), (27), and (29) recursively
and in sequence, sub-state estimate &, can be obtained
with initial guess of sub-state estimate and the asso-
ciated error covariance. The estimates of the states and

inputs can be obtained from (14) after the sub-state
estimates are given.

IV. Discussion

The recursive state and input observer (RSIO)
developed in this paper is a minimum error covariance
linear estimator whose feedback structure is a weighted
sum of the state measurements. Thus the optimal gain
does not account for noise amplified by differentiation.
This is similar to the time-invariant case [1]. This can
lead to input estimates with an insufficient signal-to—
noise (S/N) ratio. This situation can be improved by
using a low-pass filter or a band-limited differentiator,

as demonstrated by Stein and Park [2].

Note that the state estimates for time step k can be
determined just after the measurements of time step k
are obtained but the input estimates for time step k can
be calculated only after a one step time delay. This

phenomenon occurs because RSIO is acausal when

derived from a causal system.

The flexibility that RSIO offers over OSIO is signi-
ficant in that a much larger class of monitoring problems
can be addressed. For example, many manufacturing
machines have parameters which vary in a known way
with time. One example of this is a spindle system on
a CNC lathe. The workpiece inertia can be significant
compared to the rest of the spindle systems inertia and
would, therefore, be an important parameter to include
in a spindle model [9]. Since, over the entire cutting
process a significant amount of material may be
removed, a significant change in the system inertia
would occur. Since the cutting paths are well known,
this change in the workpiece inertia can be calculated in
advance, Thus RSIO could be used to monitor the
spindle drive system using remote sensing. For a
specific example of using input and state estimation on
a spindle system see Stein and Park [9].

One of the assumptions used in deriving the
recursive observer is that the input measurement matrix
D, is fixed (e, its null space is fixed with time).
This is a reasonable assumption since the input measure—
ments would typically be just a subset of the model
inputs (ie. the D, matrix would have 1's or 0's on the
diagonal). If the D, matrix is assigned arbitrarily (e,
its null space is not fixed with time) the following
additional condition is necessary for the existence of an
unbiased observer:

2V§Vk+l[I_Lk+1N}3+1]Lk:O for k:1,2,3,"' (30)

where L,=B3;Vp
Ny= (CkBk—leDk)+CkE1;~11

Note the definitions of the observer parameters need
to be redefined to accommodate the time-varying
characteristics of ,Vp. This general time varying case
is not considered in this paper because it is not a very
realistic case. (30) would have to be checked for every
time step k to determine if the estimates may be
biased. There would be no other obvious indication that
this is true. However, when the D, matrix is fixed, the
existence condition (7) need not be evaluated for every
time step, because if it is not satisfied, an ill condition
is created, and the recursive algorithm will blow-up.

As a final note about computation time, the recursive
algorithm requires (25), (20), (26), (27), (29), and (14) to
be processed in sequence. Only the evaluation of (25)
poses any computation complexity (a matrix inversion).
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Thus the computational load for this state and input
observer is similar to the conventional Kalman-Bucy
observer,

V. Conclusions
An optimal state and input observer has been
developed to observe the states and inputs of discrete,
linear, time-variant systems with unknown inputs. This
technique guarantees minimum error variance among
linear observers for a system subject to system and
measurement noise. The observer increases the flexi-
bility of applying input and state observers to model-

based machine monitoring problems.
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Appendix I.
Derivation of (11) and (12)
To obtain (11), pre-multiply both side of (8) by Niiy

and combine with (9):
Ny Egop1 = y2+1

= Nk—HEkA,kEl:—ll(Z Vibet Lyy) (1)
+ Npw 1B up+ Ny 1 Eywge

To obtain (12), pre-muitiply both side of (8) by
3 Viesi[I— LN, 1] then combine with (9), (10), and (4) :

Crr1=2 Vinr1lI— LNps 1 Egeis
=3 Vi1l I— LNy ) EyAE (o Vi T LD
+ o Vil I— LNk-%—lB’{D]:—(kaﬁ wop) T3 Vipur)
+ 2 Vg1l I— LNy 11 Eywgs
=3 Vi1l 1= LN JELAE 13 Vit
+ 2 Vgl I~ LNk+1]EKAkE;—11LMk(y1k_ W)
+ 3 Vier1lI— LNy 1 1B D (var— wan)
t V§Vk+1[]”‘ LN, 111B 5 Vi
+ 5 Vi1l = LN, 1 Ewos
=3 Vi1l I— LNy ERAE 2 Vit (12)
+3 Vigal I~ LNy 11 EyARE L LMy,
+o VierilI— LN 11B D v
+2 Vs 1l I— LNgy1 1Lty
5 Vigerl I— LNp 1 1 Egwge— 3 Vi1 [T~ LN 1]
EAE LM wy— 5 Vg [ I— LNk+1]B,DZ Wy,
=, Vi ilI— LNp ] EyAGER 12 Vi
+3 Vi [ 1= LN ) EyAGER L LMy,
+ 3 Vs 1L I— LN; 1B D yyg+ 3 Vi 1l I— LN+
[Ek_EkAkE;—llLMk ~B'D/_:]Y/Uk

Appendix II.
Derivation of (13)
From (4), (9) and the definition of N,, the following

equation is derived:
%= B LMy
=53~ B LM Cpxp+ 1)
= B I LMyCE 1By 2e— Ex LMy, (a2.1)
=E; 2\ [I—- LNJG Va8t Lyp) — Ex LMywyy,
= B\ I- LN, Vs — Ex i LMywy,
From (4), (9), (5), (11), and (7), the following equation
is derived:
wpt o Vo ExAER s Vi — [I— 3 VpNiy B 1D v
—2 VoMpy1V1ee1= Up s VDNk+1EkAkE;—11LMkV1k
—[ 1= VN1 B 1Dk yop— 3 Vp(Vhs1 + My 1t1a41)
= upt 5 VoNps EpAER L LM Crp+ w1e)
—[I—, VDNk+lB’]D;(Dkuk+ wzé)
—2 VD{Nk+1EkAkE1;—11(2 Varlet Lyp) + Ny B uy
+ NersEvword — 2 VoM 1wiz+1
=1~ DiDs—3 VoNer1 B LI~ Dy Dillu,
+2 VDNk+1EkAkE;—11L(Mkaxk+ Muwy— Vi)
—[ 1= VN B 1DF wop— 2 VoNir ExAE 7212 Vi £
— 2 VoV 1 Exwoe— 2 VMg 101241
=[3 Vi, Vot—2 VolNes1B 2 Vpa Voluy
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+ 2 VoNer i ExAEr L LMoy,
— 1=, VpNisr B 1D} wo—2 Voo EA B s Vit
—2 VpNpr1Epwor— o VoM 1001241

=y Vpl I~ Ny 1 L1y Vit + 3 VpNys lEkAkEl;—llLMkwlk
—[I—3 VpNp \B1D{ woe— 2 Vil EbAER L 2 Vi &
=2 VolNer 1 Exwge— 2 VoMt 101411

=— 3 VoNen EsAsEr 12 Via §o— 2 VolVk 1 E s
+ 3 VolNe 1 Exd B L LMy
—[I=3 VN \ B 1DF wor— 3 VpMr 101401 (a2.2)

(13) is obtained by combining (a2.1) and (a2.2):

(;Z) = Gyt Gowar+ Gapyiprr + Poube+ Qe+ Rywy 11

(13)
where
Grp= E;N L M, ]
=2V Nen EJAEL M,
G2k=[ 0 , +]
(I3 VN1 B YDy,
0
Gar =
3k [ ZVD Mk+1]
P/e= [ E;—112VNIe
~ 3 VoNu ErArEr 12 Vi
ka[ 0 —-E;\\ LM, 0
— 2 VoNi1Es 3 VoNer EsA B LMy— (I— 3, VN BOD]
0 0 0
R,=
* [o —ov,Mps1 0

Appendix III.
Derivation of {20)

From the definitions of error estimate e, a priori
estimate ¢, and (20), (4), and (9), the following
equation for e, can be derived:

ep=&p— Z‘k: £ ?Z + Kl C’;fé;? —2 Vilkylk]

= Afl: + Ky Vial CleEk_—ll ZVN}e%}; = Cpxp— wel
= é’k%/; +Kk2V5VIk{ CkE;—ll (2 VMeZ’/; — Epyxp) — wlk}
= 0= Cr +Ki2Vin
{CkE;—IIZVNk(%; - Ck) - CkE;flLyZ— wlk}
== Kpo VinChErl1 2 Vinler — Ko Vi v~ Ki, Vigwys
(a3.1)

The middle term of (a3.1) can be eliminated from the
definition of the generalized inverse and orthogonal
characteristics of a right singular matrix. Then, by
using the definition of matrix C’,, (20) is obtained:

ek=[I~KkC'k]e;—Kk2Vﬁ4kw1k. (20)

Appendix TV.
Derivation of (23)
From (15) and (16), state and input estimation error
covariance can be represented as:

II.= E(Eké‘;e) =E[{Pre,+ Quwyt Rywp1}
{Prert Quwpt+ Rywps}]

= PyE(ewel) Pi+ PiE(e,wi) Qb+ PiE(eywh ) RY

+ QuE(wiel) Pyt QuE(wywp) Qi+ QuE(wiwhy PR,
+ Ry E(wps1 e) Pyt RiE wpy wp) Q)
+RkE( wk+1wi+1)R2 (341)

From (21) and (27), sub-state estimation error, e,

can be obtained as:
er=[I—K,C A" 1ep 1+ Hpoywp—1} — KpF gy,
= inI1[ I= Ky i31Chi1]A s ieg

+ :Zi;ljo (=K iC A p i Hy gty iy

+I- KOl Hpywp—y — ZJIJ)[I— Ky iCp)]
A B i P i iy — Ky, (ad2)

Based on (a4.2) and (6), the following relations can
be derived: :

E(ekwi) = KkaRw
E(wep) =— R, FiK,
E(wpr1wi) = E(wwhs 1) =0
E( e}gw§e+1) - E( wk+1€2) =0 (343)
and (ad.l) can be simplified by substituting (a4.3), (6)
and (16):
[I:= PWPi— PR ,Q%— QuR LK LP (ad4)
+ QiR ,Qk+ RR R
(a4.4) can be represented as follows by substituting (22):
.= P¥; Py~ PK(C W, Pit FiR,Q1
— (P C i+ QR FOEP,+ PELC W, C'
+ FiR FKLPi+ QuR Q4+ RiRwR:

Let's assume that I, can be represented as follows:

II,= P¥ Pit QR+ RkRVIle§e+[PkKkSk_Zk](a4.5)
[PKSi— 24— 22

then, the following equation can be derived:

;= Pu¥; Pit QuRuQi+ RiRuRL— PSS, 2, (ad6)
— 3SiKLPL+ PR S SiK Py :

The following relations are obtained by comparing
(ad.4) and (a4.6):
SiSk= C W% C b+ FuR F
2 Si= [P C 4+ QR Fi (ad7)

From (a45) and (a4.7), (23) can be obtained assuming
that S is invertible.

Nomenclature
Ay ¢ discrete system matrix at time step k

A=y Vi1 [I= LN | 1EA El:—llg Ve
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Br = discrete input matrix at time step k

(]

G = state measurement matrix at time step k
C =3 VinCrErt1 2V 7 .
Dy © input measurement matrix at time stepk, V=2 Vp

N

18]
ZUBk

er=0— 1t

e, = fk‘%}?l
Fp=10 3Viz 0]
-1
Cum] L, LM ]
—2Vp N EwAE - L My,

o 0
#7| T~ 3 VpNg B)DE

H,= 2V§Vk+1[ILNk+1][Ek_EleAkE;—llLMk —~F D;e]
K, - optiomal gain matrix at time step k

L=5 Vo= 2]

M,=(Cy Ek_—ll L)+:(Ck By ZVD)+

NkZMkaE;—ll
Pk:[ Ei oV
— o VoNi ExALE 13 Vi)
Qk:[ 0 ~-ELL M, 0
2 VDNk+1Ek 2VDNk+1E1eA}aE1a:11L]llle_([~ ZVDN/eHB,)Dl:r

Rk:[o 0 0]

0 —2 VoM O

R,= Elwwi]= Diag (R, Ry R

R = El wywie] ‘positive define matrix

R, = Elwywi,] : positive definite matrix

R, = El wowh] : positive semi-definite matrix

Uy LU, U] left singular matrix of matrix (-),
U(.yeR***, where (+)eR*"

yU(.y @ singular matrix of matrix (), U ,eR**,
where (:)eR" rank (-)=ga

,U¢,y © null space matrix of matrix ()}, ;U ,eR* "2,
where (-)eR*” rank (-)=a

u, © system input at time step &, wu, €R™

%, © estimate of input variables at time step k

up= 2Vi774k

Vo [V, V] rght singular matrix fo matrix ( +)
V(.,€R” where (-)=R*"

V., : range space matrix of matrix ( + ), ;V(.,eR"",
where (-)eR“””, rank(-)=a

,V(.y : mull space matrix of matrix ( -), ,V(.,eR” ™2,
where (-)eR”” rank( )=«

¢ t t ¢
wr=[ wor wiz wal

Wy - System noise at time step %, wy, €R”
Wy, © state measurement noise at time step £,
wy, R’
Wy, * input measurement noise at time step 4,
wy, R’
X . system state at time step &, x, =R”
%, estimate of state variables at time step k
Y1z - State measurements at time step &, vi eRr?
Yo - input measurements at time step &, yo €R?
V5= NpEp1%,= MpCps
2<.)=[6¥(') %] ¢ singular matrix of matrix (),

S yeR"™, where (- )eR*
0¢.y © positive definite diagonal matrix, o(. &R,
where (-)eR"” rank(-)=ea

ek=(22)~( %i) : estimate error

b= o Via(I— LNDE;—1x; © sub-state variables at time
step k, &, eR""

%, © estimate of sub-state variables at time step k

% ‘a prior estimate of sub-state variables at time step k

I1,= El &,el] : error covariance of state and input

estimation at time step k

¥,= Ele,el]  error covariance of sub-state estimation
at time step k

()'=VOE UG = 1VioehUc'
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