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Routh Approximants with Arbitrary Order

Younseok Choo and Dongmin Kim

Abstract : It has been pointed out in the literature that the Routh approximation method for order reduction has
limitations in treating transfer functions with the denominator-numerator order difference not equal to one. The
purpose of this paper is to present a new algorithm based on the Routh approximation method that can be
applied to general rational transfer functions, vielding reduced models with arbitrary order.

Keywords : routh approximation method, transfer function, order reduction

1. Introduction
Consider a linear time-invariant system with the
transfer function

bt bistbys it b,s”
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G(s)= (1)
where m<{n, and all coefficients are real numbers. Let
gl{p=n and supposc we want to approximale the
system (1) by a model with the transfer function

dotdistds’+-+dgs’
cotersteasitobe,s?

G p(s)= (2)
so that two systems behave as closely as possible in
the low—frequency ranges.

During the past three decades such an approx-
imation problem has been an ample area of rescarch,
and numerous methods have been reported in the
literature. The Routh approximation method introduced
by Hutton and Friedland [1] has proven to be one of
the most powerful tools for model reduction due 1o its
cornputational simplicity and efficiency. Furthermore
the method has played a key role in solving the
instability problem encountered in other approaches
including the continued fraction expansion [2]. In other
words 1t vields a stable reduced model whenever a
high-order system is stable.

However it has been pointed out in the literature
thal the Routh approximation method has limitations in
treating transfer [unctions with the denominator-
numerator order difference not equal to one [31,[4]. To
amcliorate such problems, Langholz and Feinmesser
[4] proposed a technique using the Routh approxi-
mation method with a modified A-table. But their
method still has a shortcoming in that the order of
numerator of the reduced model is limited to the order
of numerator of the original system, which may inhibit
one to get betier approximants.
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The puwrpose of this paper is to present a new
algorithm for computing reduced models based on the
Routh approximation method. Compared to that of [4],
the algorithm of this paper has an advantage such that
the maximum order of the numerator of the reduced
model 1s not restricted to that of the high-order
system.

This paper is organized as follows. In the nexl two
sections, we briefly review the Routh approximation
method [1] and its modified form given in [4]. Our
main results are presented in Section IV with two
numerical examples, and the paper is concluded in
Section V.

II. Routh approximation method
As noted in [3] and [4], the Routh approximation in
[1] was originally meant to (reat the problems with
m=n-1 and ¢=p=-1in (1) and (2). For this case,
the method can be summarized as follows [11,[5]:
Step 1 : Construct the following «-table

an=dp an=ap ap=as ay=az -
an 0 a1y
az @21 427 an
221 0 a oy 0
@y a3) az 3)
asy
a)rO anl
a gy
[ @-Table]

and compute the ¢ parameters by e;=ay/a,, i=1.
2,-,n (the Routh array may be more convenient
than the e-table for this purposc. But (3) is used here
for the ease of presentation). In the above table, the
first row is formed by the denominator coefficients of
G(s) starting from the constant term. The entries of
all other odd rows are deterrmined by the usual cross
multiplication rule, ie, for i=2,3,--,n

ay=a;1;+1 (J even)
Cy= @1 1@, q8,-1,42 (J odd)

Step 2 @ Construct the A-table as [ollows:
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b="by by=>b, by=>5b, bjz=by -

a) 0 @3
by by by by "
an 0 axn 0 - (4)
b '
[}
[ ~Table]

The numerator coefficients of G(s) form the first
row and all even rows are copied from the a-table.
Again all items of odd rows are determined hy the
cross multiplication rule. Obtain the 2 parameters by
B.=bglay =12, n.

Step 3 : Compute Ay(s) and By(s) recursively by [5]

A W) =5"A 4 o(5)+ a4 -1 (s) (5)
Bys)= 845" 45"By(8) + @ 4B -1 (9) (6)

for £=1,2,--,p using the initial conditions B _,(s)
=By(9)=0, A-(9=1/s and Ay(s)=1. Then the
pth-order approximant of G(s) is given by

B (s
A (8

Gy (8=

III. Modified routh approximation method

Now supposc that =, » in (1) and ¢, p in (2) are
given arbitrarily with m<{» and ¢<{p=<=n. The Routh
approximation method cannot be applied in this case,
and so Langholz and Feinmesser [4] suggested a
modified method using a different S-table. In their
mcthod, the denominator A ,(s) of G,(s) is the same
as that of [1). To oblain the numcrator B, (s), we
first build a modificd A-table as follows:

by=by bnu=0b; bg=by byy=by -

an—m.l 0 an—m,a 0
bay by by by -
an—m-f—l‘l O an—m+l,3 O (7)
b
an

[Modified 8-Tablel

From the above table, we can determine the £ para-
meters by

.Blc:bko/afl

for k=1,--,m+1, where j/=un—m-+4i—1. Next com-
pute B,4+1(s) by recursively applying (6) from £=1 to
¢+1 with e, replaced by ¢, (j=n+m+k—1). Then
the reduced model is given by

Bq+1(5)

G (5) =I{qu

(8)

where the constant K, is multipliecd so that dc

gain of the original system is preserved in the
low-order model. Note that K, ;,=1 for all A=1

since
Gk—l,k(O) = ﬁl/a’ 1= G(0).

It is not difficult to see that we can compute at
most (m+1) § parameters from the modified 8-
table, which in turn implies the use of above algorithm
is limiled to the cases where the order of numerator of
the reduced model is not greater than the order of
numerator of the original system. In approxi- mation
point of view, it is a strong restriction since
higher order reduced rmodels, in general, may behave
more closely to orginal systems than lower order
ones.

IV. New algorithm

We now propose a new algorithm that can
overcome the limitation discussed in the previous
section. Even il m+xn—1, the - and A-tables of
Steps 1-2 in Section T can be built again. A caution
should be taken in this case. When even rows are
copied [tom the e-table in Step 2, no element should
be omilled. Using the computed values of ¢ para-
meters, form the D-table given below by expanding
@y, &, from bottom to top, and from left to right
(ie., through the reverse procedure of (3)) [6l. The
expansion always starts from 1 placed at the left and
bottom of the table. Then the denominator coefficients
are determined from the first row by setting ¢,= ey,
i=0,1,--,p.

€10 €1 €12 € Tt €T
en 0 e

€a—1,0 €a+1.1 €441,2 Eyrl,3 "

€q+11 0 €011,3 0 - (9)
aj)_.la/,, a;p 1
ay O
[ 1
[ bD-Table]
Similarly, expanding £,,-+-,8,+: from bottom to top,

and frorn lefl to right yields the N-table

f10 f11 f12 f13 flq
€n 0 ey 0
Bea 54-»1"-.’44-1.1 - (10)
€a 0
Bo+1€g+1.1
€4-1.1
[N Table]

All even rows in (10) are partially moved from the D
—table given in (9). Nole that the number of elements
moved decreases from g+1 to 1. The numerator
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coefficients of the reduced model arc, then, given by
di=7u i=0,1,,q.

Example 1 @ Consider a system with the transfer
function

_ 900 4 248s
Glo)= 120 + 1805+ 1025° + 18s° + ¢* (L)

It is wanted to find a third-order approximant, le.
»=3. The modified Routh approximation in [4] can
vield Gu(s) and Gp(s) only. Between the two, we
compute Gi3(s). Three ¢ parameters are easily com-
puted from the e—table by

a1=0.6667, ¢y=2, @;=05.625

On the other hand, two £ parameters computed from
the modified A-table are

B1=256.25, B:=248

Then Gu(s) is given by

o 5A.25+15.5s .
Gl =72 TT 956 16.29175 75 57 (12)

It is possible to get more accurate model Gg(s) with
the same denominator using the algorithm of this
paper. To determine Gi3(s), it is necessary 1o
calculate three B parameters, ie.,

B1=5, B,=124/45, F3=—45/8
Then, from (9) and (10), we have

56.25+15.55—0.625s° (13)
7.5+11.255+6.2917s 24 5

Guls)=

The impulse responses and Nyquist diagrams are
compared in Fig. 1 and TFig. 2, respectively. The
integral-squared error (ISE) of impulse responses for
(12) and (13) are 0.075 and 0.0229, respectively. It is

5
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Fig. 1. Comparison of impulse responses.

Model (11}
Modsl (12)
Madal (13)

T T T T T T I T T
. 4
Model (14)
Medel (15) b
Madel (16)
Y T I R
1 1 L L L 1 L L L
0 1 2 2 4 -3 8 7 g El 10

Madal (14)
5 ! ' ' _ Model(15)
! .. Madel (16)

Fig. 4. Comparison of Nyquist diagrams.

obvious that the reduced model (13) approximates (11)
more accurately than (12),

Example 2 : An eighth-order system has the ira-
nsfer function
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where
D(s) = 9600 +28880s + 37492¢ 2 4 274705
4+ 11870s*+3017s° +437s° +33s "+ °

Let p=4. Then the mcthod of [4] can yield Gu(s)
and G (s) only. For example, Gu(s) is given by

G108 = 96 +4.51155 + 5.62085 + 3.58005 4 5

On the other hand, Gx(s) computed by the proposed
algorithm is

29.9937 +12.4967s—4.7231s" (16)
1.4996 +4.51155+5.6208s ° + 3.5809s *+ 5 *

Guls)=

The impulse responses and Nyquist diagrams are
compared in Fig. 3 and Fig. 4, respectively. In this
case, ISE of impulse responses for (15) and (16) are
3.2764 and 1.0526, respectively. Again the reduced
model (16) approximates (14) much more accurately
than (15),

V. Conclusions
This paper presented a new algorithm based on the
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Routh approximation method with focus placed on the
numerator of the reduced model. The maximum order
of the numerator of the reduced model is not limited to
that of the original system, which extends an existing
result. Two examples were given for illustration.
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