Abstract
Purpose : The purpose of this study was to find the optimum TE value for enhancing $T_2^{*}$ weighting effect and minimizing the SNR degradation and to compare the BOLD effects according to the changes of TE in 1.5T and 3.0T MRI systems. Materials and Methods : Healthy normal volunteers (eight males and two females with 24-38 years old) participated in this study. Each volunteer was asked to perform a simple finger-tapping task (sequential opposition of thumb to each of the other four fingers) with right hand with a mean frequency of about 2Hz. The stimulus was initially off for 3 images and was then alternatively switched on and off for 2 cycles of 6 images. Images were acquired on the 1.5T and 3.0T MRI with the FLASH (fast low angle shot) pulse sequence (TR : 100ms, FA : $20^{\circ}$, FOV : 230mm) that was used with 26, 36, 46, 56, 66, 76ms of TE times in 1.5T and 16, 26, 36, 46, 56, 66ms of TE in 3.0T MRI system. After the completion of scan, MR images were transferred into a PC and processed with a home-made analysis program based on the correlation coefficient method with the threshold value of 0.45. To search for the optimum TE value in fMRI, the difference between the activation and the rest by the susceptibility change for each TE was used in 1.5T and 3.0T respectively. In addition, the functional $T_2^{*}$ map was calculated to quantify susceptibility change. Results : The calculated optimum TE for fMRI was $61.89{\pm}2.68$ at 1.5T and $47.64{\pm}13.34$ at 3.0T. The maximum percentage of signal intensity change due to the susceptibility effect inactivation region was 3.36% at TE 66ms in 1.5T 10.05% at TE 46ms in 3.0T, respectively. The signal intensity change of 3.0T was about 3 times bigger than of 1.5T. The calculated optimum TE value was consistent with TE values which were obtained from the maximum signal change for each TE. Conclusion : In this study, the 3.0T MRI was clearly more sensitive, about three times bigger than the 1.5T in detecting the susceptibility due to the deoxyhemoglobin level change in the functional MR imaging. So the 3.0T fMRI I ore useful than 1.5T.
목적 : 1.5T와 3.0T에서의 FLASH (fast low-angle shot) 기법를 이용한 운동중추영역의 뇌기능 자기공명영상에서 TE 값 변화에 대한 $T_2^{*}$ weighting 효과를 관찰하고 TE 값의 변화에 따른 BOLD (blood oxygen level dependent) 효과를 서로 비교하고자 한다. 그리고 활성화 영역에서 활성화상태와 휴식상태의 정량적인 값인 $T_2^{*}$에 의한 차이값을 영상화 하고자 한다. 대상 및 방법 : 24세에서 35세까지의 오른손잡이 10명의 건강한 남녀 (남:8명, 여:2명)를 대상으로 가능한 2Hz의 속도로 오른손에서 finger-tapping task (엄지 손가락과 나머지 네 손가락을 차례로 서로 마주치게 하는 운동)를 시행하였다. 운동자극은 처음에 한벤의 휴식상태 (3영상)를 가진 후2번의 활성화상태 (6영상)와 휴식상태 (6영상)를 반복하였다. FLASH (TR/flip angle: $l00ms/20^{\circ}$, FOV: 230mm) 방법를 이용하여1.5T'에서는 26, 36, 46, 56, 66 ms 의 TE를 사용하였고 3.0T에서는 16. 26, 36, 46, 56 ms의 TE를 사용하였다. 영승L을 얻은 후 PC에서 상관계수방법을 이용하여 자체 개발한 프로그램과 상관계수 0.45를 사용하여 분석 하였다. 기능적 영상에서 활성화된 영역에서 l.5T와 3.0T에서 각각의 TE에셔 활성화 상태와 휴식상태 의 차이값을 사용하여 fitting을 하여 적절한 TE값을 찾고 기능적 $T_2^{*}$영상을 구하였다. 결과 : FLASH기법을 사용하여 뇌 기능영상을 얻기에 최적의 TE 값은 1.5T에서는 $61.89{\pm}2 2.68{\;}ms,{\;}3.0T에서는{\;}47.64{\pm}13.34였다$. 뇌 활성화 영역에서 자화율 변화에 따른최대 선호 강도변화는 1.5T에서는 TE, 66ms에서 3.36%. 3.0T에서는 TE. 46ms에서 10.05%로 3.0T가 1.5T에 비해 약 3배 정도 변화가 큰 것을 알 수 있었다. 산출된 최적의 TE 값은 각각의 TE 값에서 얻은 활성화 상태와 휴식상태의 차이값의 최대의 TE 값와 일치하였다. 결론 : 뇌 기능영상에서 3.0T MRl는 1.5T에 비해 deoxyhemoglobin에 의한 자화율의 변화를 약 3배정도 잘 반영하므로 뇌 기능영상 측정시 보다 유용성이 있는 것으로 사료된다.