Abstract
The base metal and weld metal of alloy designed austenitic stainless steels were electrochemically tested in artificial sea water. Pitting resistance of 14 different stainless steels was evaluated by measuring pitting potential. The effect of alloy element to pitting potential was evaluated by changing chromium, nickel, sulfur content. The site of pitting initiation was observed by optical microscope. As a result of electrochemical test, pitting resistance of weld metal was higher than base metal, and rapidly cooled weld metal has higher pitting potential than slowly cooled weld metal. In case of primary δ-ferrite solidification, pitting potential was increased, but residual δ-ferrite was detrimental to pitting resistance. Chromium was more effective to pitting resistance than nickel, and sulfur was very detrimental element to pitting resistance.