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CENTRAL LIMIT THEOREMS FOR
MULTITYPE AGE-DEPENDENT BRANCHING
PROCESSES ‘

Hye-JEoNG KANG

ABSTRACT. We consider a supercritical multitype age dependent
branching process. We define a stochastic process Z;(t) which is
a functional of the empirical age distribution.. When the limit of
the expectation of this functional vanishes we find some sufficient
conditions for the asymptotic normality of the mean of f with respect
to the empirical age distribution at time ¢.

1. Introduction

Let Z(t) = (Z:(t),- - - , Zp(t)) be a multitype age-dependent branching
process defined on a probability space (2, F, P). A type i particle dies
at random time A; which has distribution G, and on death it creates
&; offsprings of type j. Z;(t) denotes the number of i type particles
at time t. Let m;; = E(;) and let M = ((my;))?,_; be the particle
production mean matrix. We assume that M is positively regular and
nonsingular throughout this paper. Write p(M) for its Perron-Frobenius
root which is the maximal eigenvalue of M. We assume that the process
is supercritical, that is, p(M) > 1.

An important and useful aspect of age-dependent branching processes
is the limiting behavior of the age distribution. Let Zy(t,a) be the
number of type k particles living at time ¢ with age < a and let |Z(t)]
Zi(t,a
12
limiting distribution, on the set of nonextinction with probability 1 under
appropriate assumptions on offspring and lifetime distributions.

be the total population size at time ¢. Then converges to the
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We consider a stochastic process {Z(t);t > 0} defined by
Zi(t)

p
:Z fa'k]

k=1 j=1

where {ay;(t),7 = 1,2,---} is the age-chart of type k particles at time
t. If we think Zi(¢,-) as a random point measure describing the ages of
k type particles at time ¢ then we can write

Z/ fla Zktda).

Zs(t)
. - 1z
integral with respect to the limiting distribution on the set of nonextinc-
tion.

In this paper we develop some limit theorems for the stochastic pro-
cess {Z;(t);t > 0} when the limit is zero. The main result of this paper
is given in section 2 with some preliminaries. In section 3 we analyze
the first and the second moment of Z;(t) and we prove Theorem 1 in
section 4.

Hence for any bounded continuous function f,

converges to an

2. Preliminaries and Statement of Result

We make the following assumptions on G; which are valid at all times.
(A1) my<oo,t,j=1,---,p, Gi0+)=0, G;is non-lattice.
(A2) [ uGi(du)<oco, i=1,--+,p.

The assumption (A 1) is standard and guarantees that |Z(t)| is finite for

any finite ¢. Here we introduce an analog to the concept of a Malthusian
parameter for Bellman-Harris process. Let

M(a) = ((Mi;(e)))?

i,j=1>

where M;;() = my; f;° e %'G;(dt). The Malthusian parameter « for
M and (Gl, -++,Gp) is defined to be the number o which satisfies the
equation p(M(a)) = 1, provided it exists. In the supercritical case, the
Malthusian parameter « exists and is positive. Growth rate is related to
this Malthusian parameter in the supercritical case. Let u = (uy,--- ,up)
and v = (vy, -+ ,v,) be the positive left- and right-eigenvector of M(e)
corresponding to the eigenvalue 1 such that 1-v =1, u-v = 1. Under
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the usual ‘jlogj’ conditions (E(&;;logé;;) < oo, 4,5 = 1,---,p) it is
known (see Mode (1971)) that there exists a random variable W such
that

(1) lim e~*Z(t) = nW, a.s.

t—o00

where = (7, -+ ,7,), and 7; = u;(1 — f0°° e~G,(dt)).

Now let Z(t, a) be the number of type k particles living at time ¢ with
age < a and let |Z(t)| = Z1(t) + - - - + Z,(t) be the total population size
at time ¢. Assume the ‘jlog j’ condition on the offspring distributions;

E(&;jlogé;) < 00,4,j=1,--,p.

Then it is known that (see Rama Murthy (1976)) for k = 1,--- ,p on
the set of nonextinction

"—“Zfz(ft)ﬁ) ~ cou /0 (1 - Gy (u))du

sup
T

— 0 a.s,

where o = [3°0_ | u; [ e7*%(1 - G;(u))du]~!. With z = 0o, we have for
eachk=1,.--p,

|szg))' 225 couy /ooo e (1 ~ Gi(u))du

on the set of nonextinction. Since u; > 0(k = 1,---,p), we know that
Z(t) = oo on the set of nonextinction, so it is trivial to see that

Zk(t, .’l))

@) Zx(t)

—_ Ak(.'I})

a.8.
250 as t— oo,

where Aw(2) = [ e™(1 - Gi(w))du/ f;° e*(1 - Gi(u))du.
We add superscript a to random variables and their moments to in-
dicate the case when P is supported by those w’s which start with one
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particle of age a > 0. Put

ey - A
imp(t) = E(Z;(t)|Z(0) = e)),
iDs(t) = E((Z;(1)*|Z(0) = ey),

iDf = lim e Dy(t),

o= [ -G
0
i
Z?:ﬁ'b'vj
d; = E(&)

i

b, =

REMARK 1. ;Df may not exist in general, but we can show that it
does exist when (B 4) and (B 5) below hold (see Proposition 3).

We impose the following assumptions on a measurable function f; R* —
R which are not all valid at all times.

(B1) fis continuous a.e. on the support of G; for eachi =1,--- ,p.
(B2) e (1—-Gi(t))f(t) isd.R.i foreachi=1,---,p.
(B3) [Te(1-Gi(t)f(t)dt=0foreachi=1,---,p.
(B4) e™f(t)—>0 as t— co.
(B5) (e (xmys % yms) x G;)(¢) is d.R.A. for all j, k,l=1,--- ,p.
(B6) There exists sy > 0 such that for s > s,

sup |f(a +s)(1 - Gi(s))| < oo,

a>0
sup|f*(a+ s)(1 - G(s))Gi(s)] < oo
REMARK 2. 1. (B 4) with (A 2) implies

(B4) e f2(t)(1—Gy(t)) isdRi i=1,---,p.

2. We refer the readers to Karlin and Tavlor (1976) for the definition
and criteria about directly Riemann integrability.

Now we are ready to state the main theorem of this paper.
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THEOREM 1. Let p(M) > 1. Assume d;; < 00, 3,5 =1,--- ,p. Let f
satisfy (B 1) - (B 6). Then for 0 < z; < 2y < o0, y € R,

= N2y 70 R

where ® is the standard normal distribution and

iz ka] ;D8 / ue™ G (du).

1imPi<11SWS$2,—£f—(—Q—< >=H($1SW§:E2)<I>(O_£>,
f

3. The Analysis of Moments

In this section we give some estimates for moments of Z(t) which is
the most important step in proving Theorem 1

PROPOSITION 1. Assume that (B 2) holds. Then fori=1,---,p,

lim e™*;m(t) = cou; Zuk /Ooo e~ f(u)(1 — Gi(u))du,
k=1

t—oc

where co = [>_%_; Z?:x Mg URV; f0°° te~ ' G,(dt)] ™
Proof. Given Z(0) = e;, it is easy to see from the additive property of
branching processes (see Athreya and Kaplan (1978)) for details) that

? S

(3) Zp(t) =IO > ) F(E) + ) Zplt — A

k=1 j=1
where {Zj;(u);u > 0}, are iid. copies of {Zf(u);u > 0} which
is initiated by an ancestor of type k. Taking expectation we get the
following system of renewal equations,

(4)
my(t) = (1= Gi(®)) f(£) + Y _ ma / pmp(t —w)Gi(du), i=1,---,p.
k=1 Y ‘

—at

Multiplying € both sides of (4) we get

ey (t) _ e (1 =~ Git) zp: /t e~ my(t — u)
170

(% U; Vg

-Fik (d'LL),
k=
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t
where Fj(t) = mik%/ e *“Gi(du). For each ¢t =1,--- ,p,
0

V;
p 1P
SR = £ttt
k=1 k=1
Iy t
= —(M(a)- V)
V;
1
= — Xy = 1,
since v = (vq,- - ,vp) is the right eigenvector of M(a) corresponding to

1. That is, if F};(o0) = tlim F;(t)

F = ((F;j(00))) j=1

is a semi-Markov kernel. See Asmussen (1987) for definition and related
facts of semi-Markov kernel. Hence there exists a unique stationary
measure T = (7, -+, 7,p) such that

P
UV .~ . T .~
(5) va—’:Mik(a) =m., or equivalently, ;Mik(a) ==,

i=1 ¢

We deduce from (5) that (Z}i, e ,?) is the left-eigenvector of M(a)
1 P

corresponding to 1, so
™ = ViU, 7’:1111)

Since {e™* f(t)(1—G;(t))}._, are d.R.i., we get from the generalized key
renewal theorem (see Asmussen (1987), p. 230) that

e”*hm — cOZukj e f(u)(1 — Gr(u))du

Vi

le.,

t—o0

lim e ;m;(t) = comz:uk/ % f(u)(1 — Gi(u))du.
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PROPOSITION 2. Assume (B 4) and (B 5) hold. If d;; < 00,1,j =
1,---,p, then fori=1,.

Df = }irgo e ot covZZu]/ g5 ;(u)du
where
»
93;(t) = e P~ Gi®) + e (din — mu)(em} x G)(t)
k=1
p .
+et 7 mumal(emy - img) * Gil(t)
kol kstL

Proof. Given Z(0) = e, starting from (3) we have the following equa-

tion
p EM B
20 = ()\ > 8)£%(t) +Z Z Ziks(t = X)Zsea(t — N)
k=1 1,751
p &
+ Z Z Z Zipej(t — X)Zppa(t — Xs)
Ehk#h j=1 I=1
p
+) N (Zpas(t— X))
k=1 j=1

Since Zj ;(t — A;)’s are conditionally independent given );, we have by
taking expectation

Dst) = (1-Gi(t) fg(t)+z ik — mzk)(kmf*G)(t)
k=1

+ Z makmmin| (ks - wng) * Gil(2) + Z mik(kDf * Ga)(t).

k#£h k=1

.1 . .
Multiplying ;e“’t both sides we get the following system of renewal
equations '

e Dy(t) g ; —alt=v), D (t —
(6) f( f Z/ k f u) zk(du)

v;
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Combining (B 4)' and (B 5) we see that {g¢% ;7 = 1,---,p} are dR.i.
and so ,

p %)
€™ Dy(t) — cou; Zu,/ g5 ;(u)du as t— o0
™= 0

by the generalized key renewal theorem. O

Now we consider the following representation by appealing to the
additive property of branching processes

p Zi(t)
(7) s =35 2399
k=1 j=1
where {a;(t);j = 1,2,---} is the age-chart of type k particles at time
2
(t P Zi(s)
a
7708 =22 Flak(t+9))
=1 i=1
and {afj(t +s);i = 1,2,---} is the age-chart at time ¢t + s of type [
particles in a line of descent initiated by the jth particle of type k& of
age ai;(t) living at time ¢t. Furthermore, {Za“(t)( 2k=1,---,p,j =
1,2,---} are independently distributed condltloned on the age chart at
time ¢. If a;;(t) = a, then the conditional distribution of Za’”’ ( ) is the
same as that of Z%(s) which starts with one type k particle whose initial
age is a. Given age-chart {a;;(t);j = 1,2, --} of type ¢ particles at time
t we define M(s)f by

(M(s)f)(a(t) = E(Z;79(5)|Z(0) = e

i) =

PROPOSITION 3. (a) imps)f(t) = lmf(t+s)
(b) Assume (B 4) and (B 5) hold. If d;; < 00, 1
)=

lim e~*¢ hm €™ Dag(s)s (¢

§—00

"9 (s).

,j=1,---,p, then

Proof. (a) We begin with the equation (7). Set F, = o(Z(s);s < t).
VA3 (t

my(t+s) = (izzmm )

k=1 j=1

P Z() ©
S COMEACTD)
k=1 j=1
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p Zi(t)
= Ei(Zka?"@(s))

k=1 j=1

- (ZZZ) M) ass ()

k=1 j=1
= imus)s(t).
(b) Replacing f by M(s)f in (6), we have

—atiD s t g s a(t u) D s t—
e M7 () _ M )f, Z/ k M( )f( U)F (du).

(4]
First, we'll show that g3 . is d.R.i. for fixed s and fori =1,---,p, so
that

e Dys)s(t)

COZU‘]/ gM(s)f](u)du as t—>00

U;

then we’ll prove that for each j =1,--- |p

o0
e“"‘s/ Gsys;(w)du— 0 as s — oo.
0
When the ancestor is of type 7 with age ¢ at time 0, we have the following
identity

p &

Zi(s) = I > o) f(t+8)+ DY Zpas(s — M),

k=1 j=1

where ! is the lifetime of type i particle whose initial age is t. Due to
the independence of Z;j ;(s — Al)’s given X! we get

im%(s) = f(t +5)(1 — Gi(s) )+Zmzk/oskmf(s~u)Gf(du).

k=1

Hence,

8)  (mi())® < CLFA(E+ )1 — Gis)? + Y _(kmy + GH(s)),
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where C is a generic constant. Since Gi(s) < 1, by Cauchy-Schwarz
inequality we have

(kms % G*(s) < ((kmy)x Gi)(s)

= [myts — wpei(an)
0

_ T};E /t gt + s — wPGi(du)

(km% x G)(t + 3)
- 1-Gi(t)

Combining this with (8), we have
e (M(s)f)*(t)(1 - Gi(1))

(9) < Ce"‘s{e_a(t*s)(l — Gi(t+ ) fA(t+s)
+ e (umG « Gy) (¢ + 9)}-
k=1

Since the right hand side of (9) is d.R.i. for fixed s from assumption (B
4) and (B 5), we conclude that e™**(M(s)f)*(t)(1 — G;i(t)) is d.R.i. On
the other hand, :

e (lxma(s)s - 1mam(s)s| * Gi)(t)
t
(10) - e-at/ e (¢ 4+ 5 — ) - my(s + t — )| Gi(du)
0
< e®e ) (ymy - ymy| % Gy)(t + 5),

where the last one is d.R.i. for fixed s by assumptions. Furthermore, it
follows from (9) and (10) that

/0 gM(s)f i (t)

{/000 e™+9) £2(¢ 4 5)(1 — Gi(t + )

14 p
+3 0> e N lamy - imy| + Gi)(E+ S)dt}

k=1 l=1



Central limit theorems for multitype age-dependent branching processes 1125

— Ce™ / m{e-atﬁ(t)a-c,-(t))

+3 Y e (lkmy - imy] » Gi(t))}dt.

k=1 Il=1

So

i &7 i €~ Dass(8)

p 00
= CoviZuj sli_)rg e % /0 Ir(s)s.i(u)du
i=1

< Cu; iuj }g& \/oo{e?atfz(t)l(l _ G,(t))
J=1 § .

P P
+ ) e (kmy - my| & Gi(t))}dt
k=1 I=1
= 0,
where the last equality comes from the fact that the integrand is inte-
grable. 0
4. Proofs

We begin with the representation (7)

P Zi(t)
Zit+s) =Y Zp(s).
k=1 j=1
We rewrite (7) as follows;
P Zi(t) ,
(11) Zy(t+9) =D D (279(s) = km(s)) + Zareys(t)
k=1 j=1

Dividing (11) by 1/v - Z(t + s) and introducing

Xei(s) = (277 (s) — gmip(s))e ¥
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we get

Zp(t+s) i t)e—at
VLt +s) —\V Vv Z t+ s)e~als)
Zi(t

14
Z Zk Z Xk]

1 j=1

k=
= Al( y )'+‘ Ag(t, S) + Ag(t, S),

(12)

+

o) 7 2!

v-Z(t + s)

We first show that A;(¢,s) can be made small in probability uniformly
in t, by choosing s large, and then with this large but fixed s, we show
that A;(t,s) 2, 0 as t — oo. Finally, for this fixed s, we use the
Lindeberg-Feller theorem to prove that as t — 00, As(¢, s) converges to
the desired distribution. Let I = [z, 23] be fixed with 0 < z; < 9 < 0.
In the following sequence of Lemmas we impose the same assumptions

as Theorem 1.

LEMMA 1. Given € > 0,0 > 0, there exists sy = so(g,0) such that

8 > sg implies

tlim P(W e I,]|A45(t,8)| > ¢) <6,

Proof. Fix i and recall from (1) that

e (v -Z() 2= (v-n)W, as t— oo.

For ¢, = %l—(v -n) choose s; = s1(§) such that for s > s,

(=2

sup Pl (v - Bt +5)) — (v W] 2 €1) <

20
Then for s > s; and for all t > 0,
P(W € I,|As(t,s)| > ¢€)

[

< P(W € 1,|As(t, )| > e, et (v - Z(t + 5)) —
+P(W e I le ) (v . Z(t + 5)) — (V- n)W| > &)

IA

Vv-n)z— e

Qe—a(t+s)

e2xy(v-n)

P ( |Zasios 8)] 6_%@+S>>6>+g

Ei{(Zusr 1)) +

I\D.l =2

(v-mW|<e)
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The last inequality comes from Chebyshev’s inequality. Now we can find
sy by Proposition 3 such that for s > s;

e™* lim €™ Dye)s(t) < ;11'62531(" ‘ ﬁ)5-
Let so = max{si, sg}, then for s > sp
tlirglo P(W € I,|As(t,s)] > €) <é. 0
LEMMA 2. Fix s > 0, then for any € > 0, |
lim (W € I, |Ay(t, )] > ) =0, i=1,-,p.
Proof. Put

Zk(t)e"as L
)= \/v 2t + et O Vi) =

Z(t)

\/-Z*-('%— ; kJ(s)

so that A;(t +s) = Y_F_, Ui(t, s)Vi(t, s). Hence it is enough to show that
foreach k=1,---,p,

(13) lim P(W € I,|Ux(t, s)Vi(t,s)| > ¢) =

By the conditional independence of Xy;(s)’s, usmg the fact E(Xy,;(s)|F:)
= (), we have the followmg

E(VZ(t, s))

i

J=1

oS Zt) 5
- (Zk(S) Z Z'Ykz(ak]a S))

j=1 i=}

oo Zi{t)
(Z o) Z Var(Z;*(s)

where i;’s are given in Lemma 3 below. For fixed s > 0

sup ;Dg(u) < oo, sup smy(u) < oo.
0<u<s 0<

...»

Therefore we éan see that for ¢ = 3,4,5

sup Yi,; < 0.
az0

Further (B 6) guarantees that for i = 1,2

sup vx; < 00.
a>0
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Hence
K =sup E(V}(t,s)) < oo.
tk

Given § > 0, choose M such that AI; < 6 then

B(W € I |Uk(t, s)Vil(t, 5)| > €)
< B(W e LU, s)Vi(t, s)| > &, [Vi(t, s)| < M) + P(|Vi(t, s)| > M)
£
< P, (W € I, |Uk(t, s)| > M) +4

where the last ineqﬁality results from Chebyshev inequality. Since
Uk(t,s) = 0 on {W €I} ast — oo (see (1)),

. € ‘
lim P, (W e I, |U(t, 8)] > H) = 0.
Being § > 0 arbitrary, the proof is complete. |

The following three lemmas are the multitype versions of lemmas in
Kang (1999). The proofs can be carried out in the exactly same way as
in the proofs of them. The complication comes not from the idea but
from the notation, so we omit the proofs.

LEMMA 3. For fixed sy > 0,
tlim Var(Ay(t, so)|Ft) = af.(so), in probability,
—00

where

P © B
0?(3) = ZG,%@“"S/ Zﬂyk,i(a,s)Ak(da),
k=1 0 =t
Yi(a,s) = fi(a+s)Gr(s)(1 - Gi(s)),

Tea(a,s) = =23 myfla+s)(1 - Gis))(jmy * GL)(s),

j=1

mu; (; Dy x Gg)(s),

R

w

—~—

)

[
N

|
M s

1

<.
Il

ka]mkl jmy * Gk)(s)(lmf * Gk)( )

1 1=1

P
'S
—_
=}
@
~—
I
=

<.
Il
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p 14
Ts(a,s) = ZZe kat(gmy - img) * Gi(s).

j=1 I=1

o dkj—mkl if ]=l
kil =\ mpymy if § A

LEMMA 4. For fixed sy > 0 and € > 0,
sup Er([X2(s0))% | Xg(s0)] > ee’) == 0 as t— oo,
0<a<t .

where X{(s0) = (Z$(s0) — km‘}(so))e‘%”.

The following lemma concerns the conditional Lindeberg-Feller con-
dition.

LEMMA 5. Fix sy >0, € > 0, then foreachk =1,---,p

z
f:) g [ Eu(s0)? | Xis(so)
Zk t) ! v/ Zk(t)

Now we examine the limiting behavior of P(W € I, Ax(t+s) < ¥)
for fixed s. Since e~ (v-Z(t)) == (v-n)W ast — oo, for any 61,8, > 0,
there exists ty = to(d1, d2) such that t > t, implies

P ('d <e-at%§§]ﬂ,1) — d(W, I)l > 52) < §1,

where d(z, I) = inf d(z,y). Let
yerl

!
then

wenng - {a(e20 1) <s)

>6|.7:}> 2,0 as t— oo

So noting that v
0 < P(Wel,Ayft+s) <y)— P(E)Ast+3) <y)
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we have

P(Et, As(t+5) <y) P(W eI, Ayt +3s) <y)

P(E;, Ay(t + s) < y) + 6.

IA A

(14)

Recall that

P Zi(t)
o(t + 5) ZmZXkJ(s)

k=1 =1
where X;(s) = (Z77(s) — xm}(s))e™2%, and X;;(s) are mutually inde-
pendent conditioned on F;. Further, for each k, Xy;(s),k =1, -, Zi(t)
satisfy the conditions of Lindeberg-Feller theorem (Lemma 5). Hence
using (1) and Lindeberg-Feller theorem (see Durrett (1991), p. 98)
lim P(E,, Ax(t+s) <y) = hm P(E))P(Ax(t+s) <y)

= Pz, —b6,<W <x2+62)q’< (3))

Since d,,d; > 0 are arbitrary, (14) proves the following

LEMMA 6. For fixed sy > 0,

llmP(WGIAg(tSO)<y) B(We[)cb( Y ), i=1---,p.
o o4(s0)

Proof of Theorem 1. Now let us put all the pieces together. Let
€ > 0 be arbitrary and y be fixed. Choose 7. > 0 such that

o ()5

Since lim af( s) = 012‘, there exists s;(¢) such that s > s;(¢) implies

§—00

w () (58)

<
1

<

£
4
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where 7 = 1,~1. Let 0 = § and let s* = max{sy(%,0),s:(¢)} where
s0(%,0) is defined as in Lemma 1. Then
limsup P;(W € I, Ai(t, s*) + Aq(t, s*) + As(t, s*) < y)

t—~00

< limsup P(W € I, Ag(t, s") < y+1.)

t—o0

+limsup P, (W €I, |Ai(t, s")] > %)

t—00

+limsup P, (W € I,|As(t, s)| > 1725.)

t—00
Y+ e €
< P(Wel)d <—~—) + = by Lemma 6, Lemma 2, and Lemma 1
‘ op(s*) 2 .
< P(WeDd (-Ul) +e by (15) and (16)
f

On the other hand, the same arguments as above lead to
lign inf P, (W € I, Ai(t,s*) + AQ(t, s*y+ As(t, s*) < y)
> li{niani(W € I, Ay(t,s*) <y — 1)

. . x 776
~liminf P, (W € I, 4,(t, 5")| > Z)

o " 7
—thglfP,- (W € I,]As(t, s*)| > 55)

 rvere(iz8)

> P(WeD)d <(—Ty;) e

Letting € | 0 we finish the proof. O
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