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ON POLYGROUP HYPERRINGS AND
REPRESENTATIONS OF POLYGROUPS

B. DAvvAZz AND N. S. POURSALAVATI

ABSTRACT. In this paper we introduce matrix representations of
polygroups over hyperrings and show such representations induce
representations of the fundamental group over the corresponding
fundamental ring. We also introduce the notion of a polygroup hy-
perring generalizing the notion of a group ring. We establish homo-
morphisms among various polygroup hyperrings.

1. Introduction

The concept of hypergroup, which is a generalization of the concept
of ordinary group, was first introduced by Marty [6]. A hypergroup is a
set H equipped with an associative hyperoperation - : H x H — P*(H)
which satisfies the property z- H = H.x = H, for all x € H. If the
hyperoperation - is associative then H is called a semihypergroup.

In the above definition if A, B C H and z € H then we define

A-B= |J ab, z-B={z}-B andA-z=4-{z}.

a€AbeB

A polygroup is a special case of a hypergroup. According to [1} and
[2] a polygroup is a system P = (P,-,e,”!) where e € P, ! is a unary
operation on P, - maps P x P into nonempty subsets of P, and the
following axioms hold for all z,y, z € P:

) (z-y)-2=z-(y-2),
A z-e=e-z=z,
3)z€y-zimpliesyecz-2landzey' 2.
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A hyperring is a hyperstructure with two hyperoperations + and - that
satisfies the ring-like axioms: (R, +,) is a hyperring if (R, +) is a com-
mutative polygroup, - is an associative hyperoperation and the distribu-
tivelawsz-(y+2)Cz-y+z-2, (+y) -z2C z-2z+y-z are satisfied
for every z,y,z € R.

If there exists v € R such that z-u = u -z = {z} for all z € R, then
u is called the scalar unit of R and is denoted by 1. The element 0 is
called zero element of Rif0-z =z-0=0forall z € R.

(R, +,-) is called a semihyperring if 4, - are associative hyperoper-
ations where - is distributive with respect to + .

Let R;, R, be two hyperrings. A map f : Ry — R; is called a strong
homomorphism if, for all z,y € R;, the following relations hold:

flz+y)=(f(z)+ f(y)) and f(z-y) = f(z)- f(y),

and f is called an inclusion homomorphism if, for all z,y € R, the
following relations hold:

fz+y) C fg)+ f(y) and f(z-y) C f(z)- fy)-

In section 2 of this paper, we introduce the notion of representation of
polygroups by hyper matrices, and we define a polystructure on matrices.
We will construct representations of extensions of polygroups and also
representations induced on the fundamental group of a polygroup.

In section 3, we introduce polygroup hyperring over a hyperring R
and study relations between polygroups and polygroup hyperrings.

2. Representations of Polygroups

A hypermatrix is a matrix with entries from a semihyperring. The
hyperproduct of two hypermatrices (a;;), (b;;) which are of type m x n
and n x r respectively, is defined in the usual manner

n
(ai)(bi;) = {(Cz'j) | cij € Zaikbkj} -

k=1

One of the important problems concerning representation of poly-
groups is as follows.

For a given polygroup P = (P, - e,”!), find a semihyperring R with a
scalar unit and a zero element such that one gets a representation of P by
hypermatrices with entries from R. Recall that if Mg := {(a;;)|a;; € R},
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then a map T : P — Mp, is called a representation of P if T(z; - zo) =
{T(z)|z € z1- 2} = T(21)T(22), V1,29 € P and T(e) = I, where [ is
the identity matrix.

In the following we will give an example of a polygroup and find a
semihyperring R and a representation of the polygroup over R. After
that we will obtain a representation of the direct hyperproduct of two
polygroups P, x P, from representations of P, and P». Some topics re-
lated to the above problem is also discussed.

EXAMPLE 2.1. Suppose that the multiplication table for polygroup
P = (P, e, ') where P = {e,a,b} is
‘e a b
ele a b

ala {eb} {ab}
b|b {ab} {ea}

In Z;, we define a hyperoperation @ as follows:
191=1{0,2}, 22={0,1}, 12 = {1,2} and & be the usual sum
for the other cases, and let © be the usual product in Z3. One can see
that (Z3, ®,®) is a semihyperring. Then the map T : P — Mp with

100 101 10 2
Te)={ 010, T@=(010]), T®)=(010
001 001 001

is a representation of the polygroup P.
Generally, if we choose 7,, jo, i9 # Jo, 0 < 49, jo < n and then put
T(e) = I, T(a) = A, and T(b) = B, where
a,-,-:-l i:l,---,n
A, = (a;;) with ¢ ai;, =1
a;; =0  otherwise.

B, = (b;) with { by =ay Wi, J7 jo
bigjo = 2
then T is a representation of P.
EXAMPLE 2.2. Suppose that (P},-,e;,7!) and (P, *,e5,7!) are two

polygroups. We know (P, x P3,0,E,~!) is a polygroup where (z1, ;)
o(zg,y2) = {(z,9) |z €21 22, yEP*x2 }, E=(er,e), (z,9)' =
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(z7,y7!). Now, if Ty : P, — Mg and T> : P, — Mp, are two repre-
sentations of P; and P, respectively, then we have the following repre-
sentation for P, x Py :
T1 X T2 : P1 X P2 —_— MR, Tl X Tg(l',y) = [ Tl(()x) Tz(()y) :l .

In [2] extensions of polygroups by polygroups have been introduced in
the following way. Suppose A = (4,-,¢,”!) and B = (B, ,e,”!) are two
polygroups whose elements have been renamed so that AN B = {e}. A
new system A[B] = (M, x,e,’) called the extension of A by B is formed
in the following way: Set M = AUB andletel = ¢, zf =271, e*xz =
zxe=zforall z € M, and for all z,y € M — {e}

-y ifz,yec A
ifzeB,yec A
ifze A yeB

'y ifl'ayEB’ y?ém_l

.yUA ifz,ye B, y=z7L

Txy =

B 8@ K

In this case A[B] is a polygroup which is called the extension of A
by B. In the following proposition we will see how a representation of B
gives a representation of A[B].

PROPOSITION 2.3. Let A = (A,-,e,”!) and B = (B,-,e,7!) be two
polygroups. Let T be a representation of B, then ¢ : A[B] — Mg
where

| T(z) ifzeB
‘P(““)‘{In ifzeA

is a representation of A[B|.

Proof. If z,y € B and y = 27! then ¢(z)p(y) = T(z)T(y) and p(z *
y) =p(z-yUA) =p(z-y)Up(4) = p(z-y)U{lL} Sincee€z-y,
then p(e) € p(z-y) and so I, € p(z-y). Therefore p(z *y) = ¢(z)e(y).
The rest is obvious. ' O

Let P = (P,-,e,”!) be a polygroup. We define a relation 3* as the
smallest equivalence relation such that the quotient P/3* is a group.
Then * is called the fundamental equivalence relation. Let us denote
by U the set of all finite products of elements of P and define a relation -
B on P as follows: z0By iff {z,y} Cu for some u € U. Freni proved in
[4] that for hypergroups we have §* = 3.
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The product ® in P/3* is defined as follows:

B(@) @ B'(b) = B(c) for all c € B(a) - B°(b).

The 3* equivalence relation was introduced on hypergroups by Koskas
[5] and studied mainly by Corsini [3]. See also [7].

Now let (R, +, -) be a hyperring. We define a relation v* as the small-
est equivalence relation such that the quotient R/~* is a ring. * is also
called the fundamental equivalence relation and R/«* is called the fun-
damental ring (see [7],[8]). If U denotes the set of all finite polynomials
of elements of R over natural numbers, then a relation v can be defined
on R whose transitive closure is the fundamental relation «*. Such a
relation v is defined as follows: zvyy iff {z,y} C v for some u € U.

In R/4* both the sum @ and the product © are defined as follow:

7'(a) ®7"(b) ="(¢) for all c € v*(a) +7*(b),

7" (a) ©7*(b) = 7*(d) for all d € v*(a) - v*(b).

In the following proposition we obtain a representation of the funda-
mental group from a representation of a polygroup.

PROPOSITION 2.4. Every representation T'(a) = (a;;) of a polygroup
(P,-,e,”') by n x n hypermatrices over a hyperring (R,+,-) induces
an n x n representation T* of the fundamental group P/(3* over the
fundamental ring R/v* by

T*(8*(a)) = (v"(ay)) for all 5(a) € P/5".

Proof. The proof is similar to the proofs of Theorem 8.2.1 and 8.2.3
in [7]. O

DEFINITION 2.5. Let P = (P,-,e,7") be a polygroup. Two elements
z,y € P are said to be conjugate if there exists an element z € P such
that y € z7'z2.

It is easy to see that conjugation is an equivalence relation on the set
P.

Some property of T* is given in the following proposition.

PROPOSITION 2.6. Let T be a representation of P over R of degree
n and let I,, be the unit matrix over R/~*, then

1) T*(6(e)) = In;
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i) T*(B*(z™Y)) = (T*(B*(z)))"" for all z € P;
iii) If z,y € P are conjugate, then T*(G*(x)), T*(B*(y)) are conju-
gate.

Proof. (i) For every z € P, we have §*(z) = 8*(z) © B*(e) = B*(e) ®
f*(z) and from Proposition 2.4 we get T*(3"(z)) = T (B*(z))T*(B*(e)) =
T*(8"(e))T*(3* (z)). Therefore T*((*(e)) = I,.. (il) We havee € z - !
and so B*(e) = B (z-z7!) = B*(z) © B*(z~") which implies T*(8"(e)) =
T(8*(z) © B*(z7})) = T*(8"(2))T*(B"(z™")) therefore I, = T*(6"(z))
T(8*(z™1)). So T*(B*(z™Y)) = (T*(B*(z))™". (iii) The proof is similar
to (1) and (ii). O

3. Polygroup Hyperrings

Let (P,-,e,”') be a finite polygroup, and (R, +,0, —) be a commu-
tative polygroup and (R, +, *) be a hyperring with scalar unit and zero
element. Suppose that R[P] is the set of all the functions on P with
values in R, ie., R[P|={ f| f: P — Ris a function }. On R[P] we
consider the hyperoperations defined as follow:

fog ={h|h(z) € f(z)+g(z) }, fOg= { h|h(z)e ) f(z)*9(y) }
zeT Y
We define the mapping ~! : RIP] — R[P], where ff:P— Ris
defined by f~!(p) = —f(p) for every p € P and let fo is the zero map.
Our aim in the following lemma and theorem is to show that R[P] is
a hyperring with hyperoperations @ and ©.

LEMMA 3.1. (R[P],®, fo,”") is a polygroup.

Proof. For every f,g,h € R[P], obviously we have (f & g)®h =
f®o(godh)and fo® f=f& fo =f Now let f € g h then for
every z € P we have f(z) € g(z) + h(z) and so g(z) € f(z) — h(z) and
h(z) € —g(z) + f(z). Therefore g € f ® (—h) and h € (-g9)® f. O

THEOREM 3.2. (R[P],®,0) is a hyperring.

Proof. By Lemma 3.1 (R[P], ®, fo,”1) is a polygroup. Let fi, fo, f3 €
R[P]. Then
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oo fs)= f {fle)GZf2 f3y)}
= U f1® f where ch union is over f with f(z)
f
€ Z fa(@) * f3(y)
= U Zfl b) * f(c) }
f acbc
= { a)EZflb) Zf2 *f3y) }
a€b-c aeTyY
_ { ) €3S A1) * (fola) * £2(v)) }
a€bccezy-
- {olue ZZ(fl(b)*fz(r))*fa(y)}
aebccezy
= {g[g ()*fz(m))*fa(y)}
aeb(zy)
:{g|g Z(fl *fzﬂf)*fs()}
a€(bz)y
= {g|g ZZ(fl * foz *fS(y)}
acdydebz
= U fOfs where the union is over f with f(z)
f
€Y filz) * haly)
= (hoRof

Similarly we have:

fohef)= | fog= U {hIhZ)GEf ) * g(y)

g€NDf2 gENBS zETY
={h|h e Y f) +f2())}
ZET Y

- {116 e U@ a6 + G 1) |

2E€ETY

}
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C {h|h z;f ) * fily +(z§f(w ) * fa( ))}
— U { h | h(z) € hi(2) + ho(2) }
h1, h2

where the union is over h; € f© f and ho € f O fo

= Unoh=UUkohr) =UlJheo k)

hy,ha hy h hy hy

= Jfoneh=(fof)e(fof)

Hence f O (f1i ® I;?g) C(f® fi)® (f © f2). Similarly it can be proved
that (/1@ ) O F C (fi® f)®(f20 f). Consequently (R[P],®,©) is a
hyperring. O

Now that we constructed the hyperring R[P)] from R and P we will
study relation between the polygroup P and the hyperring R[P}].

We define £ : R — R[P] by r — E, where E, : P — R is defined
by

7, g=e
E0-{5 7
It is clear that E is a one to one function and we have
E(ry+ 1) = E(r1) @ E(r2); E(r1%13) = E(r1) © E(r); E(0) = Ep :=
zero function.
Therefore R is imbedded in R[P).
If H is a subpolygroup of P, then we write

Hy={feRP||{z|flz)#0}C H}.
Then there is a one to one polygroup homomorphism from R(H) to R[P].

PROPOSITION 3.3. Let P, and P, be two polygroups and ¢ : P, —
P, be a mapping. Then there exists an inclusion homomorphism of
polygroups ¢ : R[P;] — R[P].

Proof. We define ¢(f) = f o. Obviously, ¢ is well-defined. If
h € fi ® f, then for every z € P;, we have @(h)(z) = h(¥(z)) €

fi¥(z)) + fo(¥(z)) or p(h)(z) € ¢(fi)(z) + @(f2(z)) which implies
@(h) € o(f1) ® ¢(f2) and so p(fi @ fo) C @(f1) ® ¢(fo)- O

PROPOSITION 3.4. Let ¢ : R — S be a surjective inclusion
homomorphism of hyperrings and T = Kery. Then the mapping P
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R[P] — S|P)] defined by ¥(f) = wof is a surjective inclusion homo-
morphism whose kernel is T[P).

Proof. We have
V(L @ fa)

= Yo(fidfr)=vo{f|fechdfe}
= {¢Yoflfefivf}
= { h|h(p)=9(f(p), f(p) € filp) + folp), YPE P}
= { h| h(p) € Y(fi(p) + fo(p)), VPE P}
i C {h|hp) €d(filp) +¥(fa(p)) } =¥ fiddofo
f1®fz={ €Y hly)* falz }
{woflf-’c)GZfly) fa(z)}
c {«pofw o fz) € WY £iw) }
c {¢ °f 140 fe) € 3 9A) *¢(f2(z))}
c et

Therefore % is an inclusion homomorphism. Obviously % is onto, and

Keryp= { f € R[P]|¢of=fo} where f, is the zero function
= { feR[P]|¥(f ( )) =0, Vze P}
= { f€R[P]| f(z) € Kerp, Vz € P }
= {feR[P]| f(z)eT, Vze P }=T[P].

a

Let [* be the fundamental equivalence relation on R[P] and Ugp de-
note the set of all finite polynomials of elements of R[P] over natural
numbers. In the following theorem we will construct a homomorphism

between R/v* and R[P]/T*.
THEOREM 3.5. There exists a homomorphism g : R/y* — R[P]/T*.

Proof. We define g(v*(r)) = I'*(E,). First we prove that g is well de-
fined. We know a~*b if and only if there exist 1, - -, Zpy1; Uy, - Uy €
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U with 2, = a, Tmyy = b such that {z;, z;41} Cw;, ¢ =1,---,m. Then
this implies E({z;, zi41}) € E(w) or { E(z:), E(zin)} C E(w;) € Urp
and so E(z;)[*E(z;41), i = 1,--+ ,m. Therefore E(a)I*E(b) that is to
say ['"(E,) = ["(Ey)-

Now we will show that g is a homomorphism. This is because g(v*(a)
7' (0) = 9(7*(a + b)) = I*(E(a + b)) = I*(E(a) + E(b)) = ["(E(a))
*(E(b) = g9(v*(a)) ® g(v'(b)). Similarly, we get g(v*(a) © 7"(b))
9(r*(a)) © g(v* (b))

On&e

COROLLARY 3.6. The following diagram is commutative, i.e.,
02 E = gy, where ¢, and p are canonical maps.

R = R[P
14 1o
R/y % R[P)T.
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