CORRECTIONS TO "A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES"

SEHIE PARK

ABSTRACT. This is to correct Section 4 of our previous work [1].

Section 4 of our previous work [1] is incorrectly stated and our aim in this note is to replace the first part of Section 4 (from the beginning to the line 23 of page 815) by the following:

4. New fixed point theorems for condensing multimaps

In this section, we deduce new theorems for condensing maps.

Let X be a closed convex subset of a t.v.s. E and C a lattice with a least element, which is denoted by 0. A function $\Phi: 2^X \to C$ is called a *measure* of *noncompactness* on X provided that the following conditions hold for any $A, B \in 2^X$:

- (1) $\Phi(A) = 0$ if and only if A is relatively compact;
- (2) $\Phi(\overline{\operatorname{co}}A) = \Phi(A)$; and
- (3) $\Phi(A \cup B) = \max\{\Phi(A), \Phi(B)\}.$

It follows that $A \subset B$ implies $\Phi(A) \leq \Phi(B)$.

The above notion is a generalization of the set-measure γ and the ball-measure χ of noncompactness defined in terms of a family of seminorms or a norm.

For a measure Φ of noncompactness on E, a map $T: X \multimap E$ is said to be Φ -condensing provided that if $A \subset X$ and $\Phi(A) \leq \Phi(T(A))$, then A is relatively compact; that is, $\Phi(A) = 0$.

Received May 10, 1999.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47H10, 54C60; Secondary 54H25, 55M20.

Key words and phrases: measure of noncompactness, Φ -condensing map, q-admissible.

830 Sehie Park

From now on, we assume that Φ is a measure of noncompactness on the given set X in a t.v.s. E or on E if necessary.

Note that any map defined on a compact set or any compact map is Φ -condensing. Especially, if E is locally convex, then a compact map $T: X \multimap E$ is γ - or χ -condensing whenever X is complete or E is quasi-complete.

The following is well-known; for example, see Mehta et al. [1997].

LEMMA. Let X be a nonempty closed convex subset of a t.v.s. E and $T: X \multimap X$ a Φ -condensing map. Then there exists a nonempty compact convex subset K of X such that $T(K) \subset K$.

Note that even if X is admissible, we can not say that K is admissible in E. Therefore, we need the following concept:

A nonempty subset X of a t.v.s. E is said to be q-admissible if any nonempty compact convex subset K of X is admissible. We give some examples of q-admissible sets as follows:

- (1) Any nonempty locally convex subset of a t.v.s.
- (2) Any nonempty subset of a locally convex t.v.s.
- (3) Any nonempty subset of a t.v.s. E on which its topological dual E^* separates point. Note that any compact convex subset of such a space E is affinely embeddable in a locally convex t.v.s.; see Weber [1992b].

It should be noted that an admissible t.v.s. (in the sense of Klee [1960]) and a q-admissible t.v.s. can be also defined.

From Theorem 1 and Lemma, we have the following:

THEOREM 2. Let X be a q-admissible closed convex subset of a t.v.s. E. Then any Φ -condensing map $F \in \mathfrak{B}^{\kappa}(X,X)$ has a fixed point.

Proof. By Lemma, there is a nonempty compact convex subset K of X such that $F(K) \subset K$. Since $F \in \mathfrak{B}^{\kappa}(X,X)$, there exists a closed map $\Gamma \in \mathfrak{B}(K,K)$ such that $\Gamma(x) \subset F(x)$ for all $x \in K$. Since Γ is compact and K is admissible, by Corollary 1.1, it has a fixed point $x_0 \in K$; that is, $x_0 \in \Gamma(x_0) \subset F(x_0)$. This completes our proof. \square

COROLLARY 2.1. Let X be a q-admissible closed convex subset of a t.v.s. E. Then any closed Φ -condensing map $F \in \mathfrak{B}(X,X)$ has a fixed point.

COROLLARY 2.2. Let X be a q-admissible closed convex subset of a t.v.s. E. Then any Φ -condensing map $F \in \mathfrak{B}^{\sigma}(X,X)$ has a fixed point.

In the remainder of this section, we list more than ten papers in chronological order, from which we can deduce particular forms of Theorem 2.

Darbo [1955]: Recall that Kuratowski defined the measure of non-compactness, $\alpha(A)$, of a bounded subset A of a metric space (X, d):

 $\alpha(A) = \inf\{\varepsilon > 0 : A \text{ can be covered by a finite number of sets}$ of diameter less than or equal to $\varepsilon\}$.

Let $T:X\to X$ be a continuous map. Darbo calls T an α -contraction if given any bounded set A in X, T(A) is bounded in X and

$$\alpha[T(A)] \le k\alpha(A),$$

where the constant k fulfills the inequality $0 \le k < 1$.

Darbo [1955] showed that if G is a closed, bounded, convex subset of a Banach space X and $T: G \to G$ is an α -contraction, then T has a fixed point.

Sadovskii [1967]: Introduced the notion of condensing maps in Banach spaces and obtained a form of Corollary 2.1 extending the above result of Darbo.

This is the end of our corrections.

REMARKS. 1. Our failure in [1] is mainly based on the unjustified fact that every admissible set is q-admissible. It would be interesting to prove or disprove this statement.

2. Until now, the results in Section 4 were used for locally convex t.v.s. only. There exists a measure of noncompactness on a certain subset in a more general t.v.s.

832 Sehie Park

3. Similarly, in our another previous work [2, Theorems 3 and 4], the admissibility of X should be replaced by the q-admissibility. Moreover, in [3, Theorem 1], $\operatorname{cl} f(D)$ should be replaced by D. Further, each of [3, Theorems 2-4] can be slightly improved by replacing the admissibility of K by that of D.

ACKNOWLEDGEMENT. The author would like to express his gratitude to those who gave kind comments to [1]; especially, to Professors C. Corduneanu, Lai-Jiu Lin, and Do Hong Tan.

References

- [1] Sehie Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 35 (1998), 803-829.
- [2] _____, Fixed points of the better admissible multimaps, Math. Sci. Research Hot-Line 1 (9) (1997), 1-6.
- [3] _____, Collectively fixed points and equilibrium points of abstract economies, Math. Sci. Research Hot-Line 1 (11) (1997), 9-13.

Department of Mathematics Seoul National University Seoul 151–742, Korea

E-mail: shpark@math.snu.ac.kr