References
- An introdaction to orthogonal polynomials T. S. Chihara
- J. Approx. Th. v.46 On the greatest zero of an orthogonal polynomial G. Freud
- Reports of the Faculty of Technical Mathematics and Informatics no. 94-05 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue R. Koekoek;R. F. Swarttouw
- Constr. Approx. v.8 Christoffel Functions, Orthogonal Polynomials, and Nevai's Conjecture for Freud Weights A. L. Levin;D. S. Lubinsky
- Bull. Amer. Math. Soc. v.15 no.2 Freud's conjecture for exponential weights D. S. Lubinsky;H. N. Mhaskar;E. B. Saff
- Constr. Approx. v.4 A proof of Freud's conjecture for exponential weights D. S. Lubinsky
- J. London Math. Soc. v.46 no.2 Sub-exponential growth of solutions of difference equations D. S. Lubinesky;P. Nevai
-
SIAM J. Math. Anal
v.17
Asymptotics for the greatest zeros of orthogonal polynomials
A.
$M\'{a}t\'{e}$ ;P. Nevai;V. Totik - J. Approx. Th. v.67 Orthogonal polynomials : their growth relative to their sums P. Navai;J. Zhang;V. Totik
- Classical Orthogonal Polynomials of a Discrete Variable A. F. Nikiforov;S. K. Suslov;V. B. Uvarov
- Math. USSR Sb. v.47 On asymptotic of properties of polynomials orthogonal on the real axis E. A. Rahmanov
-
Amer. Math. Soc. Colloquim publications 23 second edition
Orthogonal Polymials
G.
$Szeg\"{o}$