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BIFURCATION ANALYSIS ON AN UNFOLDING OF
THE TAKENS-BOGDANOV SINGULARITY

"~ GiL-JuN HAN

ABSTRACT. A complete analysis of the equation =’ =y, ¥y’ = Sy —
az? + oz + Szy, where o and 3 small, describing a particular
unfolding of the Takens-Bogdanov singularity is presented.

1. Introduction

In this paper we provide a complete bifurcation analysis of a nilpo-
tent singularity of the Takens-Bogdanov type with a two-parameter
unfolding given by

' =y+0(3)

(1) Y = By — ax? + o®z + dzy + O(3),

subject to the nondegeneracy hypotheses § # 0. When a = 8 = 0,
the vector field (1.1) has a double zero eigenvalue at the origin and
has a line of fixed points. By a simple rescaling, we can set § =
+1. In addition, the O(3) terms in (1.1) may be made arbitrary small
relative to the terms retained, and the normal form truncated at second
order. Although we do not prove it, the phase portrait we obtain are
structurally stable ([1]) and the dynamics of (1.1) are not qualitatively
changed by the higher order terms in the normal form. The unfolding
system

' =y+0(3)
v = B+ ax + ax® + bzy + O(3),

Received July 19, 1997.

1991 Mathematics Subject Classification: 34C05, 34C15, 34C23, 34D99.

Key words and phrases: center manifold reduction, normal form, unfolding,
codimension, nilpotent singularity.



460 Gil-Jun Han

has been extensively studied ([1,8]). Also the unfolding system

' =y+0(3)
Y = Bz + ay + az® + bxy + O(3),

is also understood ([5]). The problem with Z; symmetry, described by

' =y+0(5)

v = Bz + oy + az® + bzly + O(5),
is studied by Carr [2], Knobloch and Proctor [7]. The unfoldings can
be produced by center manifold reduction and normal form calcula-

tion from a larger, even infinite dimensional set of ordinary differential
equations.

2. The Hopf bifurcation

Fix § = —1. (There is a similar analysis for the case of § = 1).
Consider
!
r =
(2.1) Y

Y =By —ax?+ o’z — zy.

Then (0,0) and (a,0) are the only fixed points for the system (2.1).
The Jacobian matrix is the following:

S 0 1
"\ —20z+4+a’-y B-z)°

So
0 1 0 1
J I(O,O)= (a2 ﬂ) and J I(a,0)= (__az ﬁ—a) .
Thus
detJ |(0’0)= —a2, trJ |(0,0)= ﬁ,
and

detJ |(a,0)= a2’ trJ |(a,0): ﬁ - .
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Therefore the origin is always a saddle and the nontrivial fixed point
(o,0) may undergo a Hopf bifurcation on 8 = . Actually, the eigen-
values associated with the linearization of (, 0) are given by

N R E RV T
1,2 = 2

and so those on the curve B = «a are given by A1 9 = +ia. Thus we
have %RG)\l,z |s=a= % # 0. Therefore the fixed point (e, 0) undergoes
a Hopf bifurcation on 8 = a.

Next, we check the stability of bifurcating periodic orbit.

THEOREM 2.1. ([2, 9]) Consider the system
(2.2) z' = F(z,u), € R", p€R.

Assume that at the bifurcation point (i.e., u = 0), the reduction to the
center manifold takes the form:

z\' (0 -w\ [z + G(z,y,0)
y) \w 0 )\y G?*(,y,0) )’
where w is the imaginary part of the eigenvalues of D,F(0,0) and

(z,y) € R2. The terms G(z,y,0) are nonlinear in = and y. Then the
stability of the bifurcating periodic orbit is determined by

1 1
¥ = E[Gimm + Giyy + G:%::cy + Giyy] + -]TG_w-[G;y(Gix + G;y)
(2.3) ~GL,(G2, + Gy,) - G1,G2, + G, G2,

where all partial derivatives.are evaluated at the bifurcation point
(z,y,p) = (0,0,0). Ifv > 0, then the bifurcating periodic solution
is unstable and if v < 0, then the bifurcating periodic orbit is asymp-
totically stable.

By some transformations and by using the above theorem, we get
v = %. Therefore if o > 0, then v > 0 and so the correspoding
bifurcation is a subcritical to an unstable periodic orbit. On the other
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hand, if @ < 0, then v < 0 and so the corresponding bifurcation is a
supercritical to a stable periodic orbit. Note that in the case of § = +1,
we can analyze the system similarily. The local bifurcation diagrams
are shown in Figure 1. and Figure 2.

g 8

~ o

=" I

Hopf
B=-a

Figure 1. Figure 2.

3. The Existence of homoclinic bifurcation

In section 2, we have analyzed all possible local bifurcations for the
system

=y

3.1
(3.1) y =Py—az®+lztay, a,peO0().

However, a careful study of Figure 1 and Figure 2 reveals that there
must be additional bifurcations. This remark is based on the behavior
of the stable and unstable manifolds of the saddle point. For instance,
for 3 > a and a > 0, the positions of the stable and unstable manifolds
are interchanged relative to the situation for 8 < 0, @ > 0 and for
B < a and a < 0, the positions of the stable and unstable manifolds
are interchanged relative to 3 > 0, & < 0. (See Figure 1). For the case
of Figure 2, in region 8 < —a and a > 0, the stable and the unstable
manifolds have opposite direction compared with the case 8 > 0, a > 0.
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Inregion § > —a and a < 0, the stable and the unstable manifolds have
opposite direction compared with the case 8 < 0, a < 0. (See Figure
2). In all cases, a likely candidate for the global bifurcation which will
complete the bifurcation diagram is a homoclinic bifurcation. We now
introduce the following theorem.

THEOREM 3.1. ([3]) Consider the following system:

=y
(3.2) , 9
Y =p1+poy +x° Loy

Then, for any p1 and p2, there exists a homoclinic bifurcation in region

0< p2 <+/—p1 for +zy
— V=1 < e <0 for —zy.

The local bifurcation analysis for system (3.2) via Melnikov integrals
indicate that for small values of u; and usg, there exists a homoclinic

bifurcation which is given by y; = —%ug + O(u2% ) ([4]). However, for

the system (3.1), we cannot find any rescaling transformation for using
Melnikov method ([4]). Now, for the system (3.1), we show existence
of homoclinic bifurcation and find the curve numerically by calculation
with DSTOOL ([6]). We begin by rescaling the dependent variables
and parameters of (3.1) as follows:

T=e€u, y=¢€v, a=¢eu 0=,

and we rescale the independent variable time as follows:
t

t— ~
€

so that (3.1) becomes

=

3.3
(3:3) v =vv— pu? + pPutuw, v, pe0Q).

The system (3.3) transforms into
el

u

D
ﬁ’“—s
4

(3.4)

+(V:tg)1‘)—m7,2:tﬂ17
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by the transformation v = %+ 4 and v = 9. We rescale the dependent
variables as

@=—up and ¥ = —plq

and the independent variable as
t— ut
so that the system (3.4) becomes

P =49

(3.5) 1 v 1
d=—z+(;iim+ﬁ¢m% v, p € O(1).

Therefore the system (3.1) is equivalent to the system (3.5). Now the
system (3.5) is of the form of the system (3.2), where p; = —}% and
pox =L+ 4.
Consider first the system
P=gq
1

(3.6) ; v 1 9
q——1+ﬁ+§m+p—m,mu€0m,

which is equivalent to the system

3.7) ¥ =v
8. y =Py —oz?+a’z+zy, a,Be0().

The local bifurcation theory has shown that the system (3.7) under-
goes a Hopf bifurcation on 8 = —a. Also from the Theorem 3.1,
the system (3.6) has a homoclinic bifurcation which occurs in region
—% < pg+ < 0. The statement —% < ug+ < 0 is equivalent to the
statement —1 < ‘g < —3 for the system (3.7). Therefore by The-
orem 3.1, we can conclude that the system (3.7) has a homoclinic
bifurcation and the curve exists in region —1 < g— < —%. Calcu-
lations with DSTOOL show that the stable and the unstable man-
ifolds intersect at g ~ —0.864546 (See Figure 4). The calculation
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with DSTOOL also provide that there exists an unstable periodic or-
bit in region -1 < g < —0.864546, o < 0, and a stable periodic
orbit in region -1 < g < —0.864546, a > 0. Therefore we can
say that numerically, the system (3.7) has a homoclinic bifurcation
on 3 = —0.864546a for all a.

Now consider

p=gq
(3.8) 1

v 1 9
q —*Z+(;—§)(I+P +pq, v, p€0O(1)

which is equivalent to the system

=y

3.9
(3.9) y' =By ~az’+o’z-zy, a, BeO).

A similar analysis shows that the system (3.9) has a Hopf blfurcatlon on
B = a and a homoclinic bifurcation which occurs in region 3 1< Q <1
Calculations with DSTOOL show that the stable and the unstable
manifolds for the system (3.9) intersect at é ~ 0.864546 (See Figure
3). The calculation with DSTOOL also prov1de that there exists an
unstable periodic orbit in region 0.864546 < g <1l a>0,anda
stable periodic orbit in region 0.864546 < g < 1, o« < 0. Therefore,
numerically, the system (3.9) has a homoclinic bifurcation on 8 =
0.864546a for all o

a=0.1 , §=0.0864546 a=-0.1, $=-0.0864546

Figure 3. Saddle Connection for (3.9).
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1

a=0.1, §=-0.0864546 a=-0.1, §=0.0864546

Figure 4. Saddle Connection for (3.7).

We complete the bifurcation diagrams in Figure 5 and Figure 6 for
the systems (3.9) and (3.7) respectively.

B
ﬂ\
Hopf

S —

Homoclinic

B = 0.864546c

Figure 5. Bifurcation Diagram for (3.9).
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Figure 6. Bifurcation Diagram for (3.7).

References

R. 1. Bogdanov, Versal deformations of a singular point on the plane in the
case of zero eigenvalues, Functional Anal. Appl. 9 (1975), 144-145.

J. Carr, Applications of Center Manifold Theory, Applied Mathematical Sci-
ences, vol. 35, Springer-Verlag, New York, 1981.

F. Dumortier and C. Rousseau, Cubic Lienard Equations with Linear Damping,
Nonlinearity 3 (1990), 1015-1039.

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems
and Bifurcations of Vector Fields, Applied Mathematical Sciences 42 (1983),
Springer-Verlag.

P. Hirschberg and E. Knobloch, An Unfolding of the Takens- Bogdanov Smgu-
larity, Quarterly of Apphed Mathematics (1991), 281-287.

S. Kim and J. Guckenheimer, A Dynamical System Toolkit with aen Interactive
Graphical Interface, Center For Applied Mathematics (1995), Cornell Univer-
sity.

E. Knobloch and M. R. E. Proctor, Nonlinear periodic convection in a double-
diffusive systems, J. Fluid Mech. 108 (1981), 291-316.

F. Takens, Singularities of Vector Fields, Publ. Math. THES 43 (1974), 47-100.
S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos,
Springer-Verlag, 1990.

Department of Mathematics Education
Dankook University
Seoul 140-714, Korea



