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ON THE CRYSTALLIZATION OF 3-MANIFOLDS
ASSOCIATED WITH POLYHEDRAL SCHEMATA

KyunGg-HEE Ko AND HYUN-JONG SONG

ABSTRACT. In this paper we introduce a method of presenting 3-
manifolds by polyhedral schemata with 2 vertices so that they may
be naturally associated with given crystallizations of 3-manifolds.
As applications, we explicitly present crystallizations of n-fold cyclic
branched coverings of §° over 2-bridge knots.

1. Introduction

It is well known that any closed 3-manifolds M3 can be presented
by a 4-regular properly edge colored graph I' = (V, E) with coloring
r: E — Az = {0,1,2,3} in such a way that a ball complex B(T)
associated with I' yields the underlying space |B(I'}| homeomorpic to
M?3. We briefly sketch what B(T') is alike (see [7]). Take I' as the 1-
skelecton of B(T'). For each pair A! = {a, 8} of colors of A3, we can
determine b i many mutually disconnected 1-cycles r’ ; in I' whose edges

are colored by a and 3 alternatively, i.e., [V, are 2-regular proper edge

&
colored graphs for 1 < j < bai and 1 <4 < 6. Attaching 2 discs D?toT

so that 8D? = IV'A,i , we get the 2-skelecton of B(I') with b=}, _; ¢bas
many 2 cells. Similarly for each triple A} = {a, 8,7} of colors of A3,
we have tas connected components of 3-regular properly edge colored

graphs I, colored by Al for 1 < j <ty and 1 < i < 4. T presents a
2 . 2 .

closed 3-manifold if and only if I, presents S%, the 2-sphere, i.e., I,

2 3 2

together with 2 cells determined by all pairs of colors in A} forms a closed
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surface homeomorpic to S2. Finally, we get B(T) with ¢t = 3, ;4 tas
many 3 cells by attaching 3-discs D? to the 2-skelecton of B(I') for each
;. In the above discussion, we say I, is a triball and T is a 3-gem

(3~§:limensional graph encoded 3-manifoldz). In particular, a 3-gem I’ is
said to be a crystallization of M3 if tay =1 foreach1 <i <4, ie, T
has exactly 4 triballs obtained by deleting i-colored edges of I' for each
i € 3.

In the sequel, we assume that M3 is a closed connected orientable 3-
manifold. Let P be a polyhedron, P/ ~ be the polyhedron after pairwise
identifications of the faces of P and w : P — P/ ~ be the associated
natural projection. Then P/ ~ is said to be a polyhedral schema of M 8
if the underlying space |P/ ~ | is homeomorphic to M 3. Now let us
talk about main results of this paper. Gagliardi[4] showed how to get
a crystallization of M3 from a given Heegaard diagram of M 3. On the
other hand, Mandel and Lins|7] provide a general method of getting a 3-
gem from a given polyhedral schema of M 3, This 3-gem can be brought
into a crystallization by a succession of 1-dipole cancellations,kinds of
moves corresponding to the Alexander moves in simplicial complexes.
In this paper, we discuss a method of getting crystallization directly
from a given polyhedral schema of M? based on Gagliardl’s work on
the Heegaard diagram. What we claim is that if a polyhedral schema
of M3 has 2 vertices and its 1-skeleton is loopless, then we can get
an associated crystallization in a fairly straightforward manner. For
instance, we can show how to get a crystallization ¢(3,3,2, 1)(c.f. Fig.
4 in [7]) for the guaternion space 5%/Qg from the polyhedral schema of
53/Qg described in [7] (c.f. Fig. 19 in [6]) without going through 1-
dipole cancellations. Moreover we see that any crystallization (T', r) of
M3 with a simple graph I" can be associated with a polyhedral schema
of the form discussed above. For more rigorous treatments, see theorem
1. As applications, we explicitly present crystallizations of n-fold cyclic
branched coverings M,(k, h) of 2-bridge knots b(k, h) in theorem 2
through Minkus’ polyhedral schemata of M,(k, h)[5], which may be
thought of as partial extensions of Ferri’s work[3] on crystallizations of
2-fold branched coverings of S3.
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2. Heegaard diagrams and crystallizations

We introduce a useful concept to explain succinctly how Gagliardi[4]
obtained crystallizations from given Heegaard diagrams. Let M = {m; :
1 <4 < g} be a set of meridians for the handlebody. H, of genus g. By
cutting 0H, along the meridians, we have a surface S, homeomorphic to
S2\2g-holes with boundaries m;” and m; corresponding to each m; € M.
Let ¢ be a simple closed curve on S, disjoint from 85, = {m},m; : 1 <
i < g} and S, 1 << 2 be two pieces of Sy obtained by cutting S,
along c. Then c is said to be a cutting meridian of H, with respect
to M if for each pair {m;,m; h1<icy, S; must contain only one of the
pair (and hence the other must belong to Sg). If mgyy is a cutting
meridian of H, with respect to M = {m; : 1 < i < g} then it is easy
to see that for each 1 < i < g, m; is a cutting meridian with respect
to M; = M\{m;} U {mgy41}. This observation may justify a following
definition. We say Mg = {m; : 1 <1 < g} is a set of extended meridians
of H, iff one of Mg is a cutting meridian with respect to the rest. And
(Mg = {m;}, M'g = {m/})1<i<g+1 is said to be an extended Heegaard
diagram associated with a Heegaard splitting M*® = H,U H} iff M (resp
M) is a set of extended meridians of H, (resp. H}).

With those concepts, we may rephrase Gagliardi’s theorems relating
Heegaard diagrams to crystallizations as follows.

LEMMA 1. (Gagliardi [4]) Let (T',r)be a crystallization of M*. For
each pair A, = {a,0} (resp. A, = D3 — ;) of colors of As, let
{Th, : 1 <i < g+1} (resp. {Fi& :1 <4< g+1} ) be mutually dis-
connected I-cycles in I' whose edges are colored by A\, (resp. A;) then
there exist a handlebody H, and a regular imbedding ¢ : |I'| — OH,
such that (Mg, M’;) is an extended Heegaard diagram for M®, where
Mp = {i(T', ) hcicosr and M'p = {i(T'; ) hicizg.

LEMMA 2. (Gagliardi [4]) Given a Heegaard diagram (M, M') of
M? associated with genus g Heegaard splitting, let (Mg, M’;) be an ex-
tended Heegaard diagram obtained by adding cutting meridians to M,
M’ respectively. Then (Mg, MY) yields a crystallization of (T', ) of
M3.
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For graphical presentations of Heegaard diagrams or extended Hee-
gaard diagrams, we make use of the following notations. Let P(M, M')
be a planar Heegaard diagram, i.e., 2g circles mi representing meridi-
ans in M and mutually disjoint arcs with endpoints on mi representing
meridians in M’. Similarly we denote P(M, MY) (resp. P(M/, Mg))
by a planar Heegaard diagram P(M, M’) (resp. P(M', M)) with arcs
representing a cutting meridian with respect to M’ (resp. M). Finally
we mean P(Mg, M%) by a planar presentation P(M, M%) of (M, M%)
with a cutting meridian with respect to M which is depicted by a simply
closed curve.

REMARK 1. Gagliardi’s construction process of crystallization from
a Heegaard diagram may be interpreted in our terms as follows. First
step of crystallization is to find a cutting meridian m,,; with respect to
M from P(M, M) so that m,.; meets the arcs representing meridians
in M’ transversely (c.f. (a), (b), and (c) in [4, lemma 4]). Interchanging
the roles of M and M', we can find a cutting meridian m;,, with respect
to M’ which meets the arcs representing meridians in Mg transversely.
Then we have a planar presentation P(Mpg, M’;) of an extended Hee-
gaard diagram. Next step for coloring of edges in I' can be carried out
as follows. For fixed colors a, 3 € A3, let M% (resp. M%) be a set
of the arcs representing meridians in Mg and lying in side of S5 (resp.
S8), where S and S? are two regions in the plane model P(M’, Mk)

determined by m;_,. Then we assign the color a (resp. 3) to arcs in Mg

(resp. M?%). Note that a cutting meridian my,, Plays a role of cyclic
assignments of colors a, 8 to arcs representing each meridians in Mg.
Now we assign remained two colors v,d € A3 to the arcs representing
meridians in M’; by taking the same step as the above with P(M, M)
and mgy;. Finally, we get a desired crystallization (I', r) by identifying
each pair of circles m¥ , 1 <i < gin P(Mg, Mk).

Let us talk about a graphical method of finding cutting meridians.
Given a planar Heegaard diagram P(M, M), let K be the graph ob-
tained by collapsing each circle mf to a vertex v}, 1 <4 < g so that
arcs with end points on m are incident with vyf. Here K is said to be
the graph of P(M, M').

A partition {V;, 3} of V = {vf : 1 < i < g} is said to be admissible
if for each 1 < i < g, V; contains the only one of the pair {v;",v;}. An

AR

admissible partition {V}, 2} of V determines a set C, say a cut of K,
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of all edges joining one vertex in V; and the other in V,. By isotopic
moves, we may locate all vertices in V; (resp. V2) above (resp. below)
the z-axis so that any edge with both end points in V; or V; is disjoint
from the z-axis. Then we can make all edges in C transversely meet
the z-axis once. Here the z-axis together with the ideal point may be
thought of as a cutting meridian with respect to P(M, M'). Conversely
for a cutting meridian ¢ with respect to M in P(M, M’), there exists
an admissible pair {V},V2} of V and a cut C of K associated with c.

The above graphical arguments are still valid if M’ is replaced by an
extended meridian M/, in P(M, M').

3. Polyhedral Schemata and crystallization

Suppose M? has a polyhedral schema P/ ~, then by considering a
regular neighborhood RN(K;) of 1-skelecton K of P/ ~ in M3, we can
get a Heegaard decomposition v

M?® = |P/ ~ | ~ M®\RN(K;) U RN(K),

where H, = M3\ RN(K,) is a handlebody of genus g = the number of
pairs of identified faces in P and so is H, = RN(K;) by Poincaré duality.
For each edge e of Ki, we consider a disc D? properly imbedded in H A
and meeting transversely at the midpoint of e. Then the boundary of
D? is said to be a pre-meridian (of H. ;) corresponding to e. Suppose K
has k vertices and hence g+k —1 edges. Then by considering a maximal
tree T with k — 1 edges, we see that pre-meridians corresponding to g
edges in K1\T contribute meridians of H;. Hence we have.

LEmMMA 3. Takem; = RN(Ki)N (i —th facesof P/ ~), 1<i< g
as the standard meridians of H,. Then by reading pre-meridians corre-
sponding to each edge in K;\T in terms of simply closed curves on H, 9
we get the associated Heegaard diagram.

From lemma 3, we see that any polyhedral schema can be crystallized
by applying Gagliardis’ method to the associated Heegaard diagram.
But it normally requires two steps in order to get two cutting merid-
ians one from P(M, M!’) and the other from P(M’, M). Suppose
P(M, M') is given by reading meridians M’ of H, = RN(K,) in the
framework that meridians M of H, corresponding to identified faces
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are thought of as standard meridians. Then we need a step for getting
P(M', M) dual Heegaard diagram to P(M, AM') which amounts to
reading meridians M in the framework that meridians M’ are thought
of as standard ones. After we get a cutting meridian with respect to M
from P(M, M'), we need one more step for getting a cutting meridian
with respect to M’ from P(M', Mg). Even in polyhedral schemata
with a single vertex, the latter step is cumbersome compared with the
former. For the process of getting P(M', M), see for instance [9].

One of main results of this paper is to provide a family of polyhedral
schemata that saves the entire process of obtaining cutting meridians
from P(M, M'). Moreover, we show that any crystallization (T, r)
of M3 with a simple graph I" can be naturally associated with such a
polyhedral schema. We say a polyhedral schema of M? is loopless if its
1-skelecton K does not contain any loop as a graph.

PROPOSITION 1. Let P/ ~ be a loopless polyhedral schema of
M? with 2 vertices. With the notations in lemma 3 and reading pre-
meridians corresponding to all edges in K, in terms of a simply closed
curve on 0H,, we immediately arrive at P(M, M7p).

Proof. Since K, is loopless, any edge e in K contributes a tree of K.
Hence pre-meridians corresponding to the rest of edges form meridians
of H, = RN(K;). Furthermore it is obvious that the pre-meridian corre-
sponding to e plays a role of the cutting meridian. Thus all pre-meridians
form extended meridians M, of H, = RN(K)). O

Conversely we have

PROPOSITION 2. Suppose the graph K of P(M, M) is loopless.
Then there exists a loopless polyhedral schema with 2 vertices associated
with P(M, M) by Proposition 1.

Proof. Let K be the graph of P(M, M}). Then K is connected
due to the role of the cutting meridian even if the graph of P(M, M’)
has multi connected components. Moreover since K is loopless, we may
think of K as the 1-skelecton of a polyhedron P. Let P* be the dual
polyhedron. We identify a face of P* dual to the vertex of K corre-
sponding to m;" with that of P* dual to the vertex of K corresponding
to m; so that it may induce the identification of edges of P* dual to
those of K representing oriented meridians in M’;. Then it is easy to
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see that P*/ ~ is a loopless polyhedral schema with 2 vertices yielding
P(M, Mfp). O

Conversely, we see that any crystallization (T',r) of M3 with a simple
graph I can be naturally associated with a loopless polyhedral schema,
with 2 vertices. A crystallization (T, 7) is said to be of polyhedral type
if for each pair {@, B} of colors in A;, Pys(M, MY) is loopless. For
instance, a crystallization (T, r) is of polyhedral type if T is a simple
graph. By lemma 1 and proposition 2, we have

REMARK 2. Not all crystallizations are of polyhedral type. For ex-
ample, see a crystallization of $! x S? in [7, p. 267). Figure 1 shows loop-
less polyhedral schemata with 2 vertices recovered from a crystallization
DESF of the Poincaré homology sphere and Cavicchioli’s 24-vertex crys-
tallization of the binary tetrahedral space in (7, p. 280).

DESF Cavicchioli’s 24-vertex crystallization
Figure 1

THEOREM 1. Suppose a crystallization (T, r)of M3 is of polyhedral
type. Then for each pair of colors a, 3 € /\s, there exists a loopless poly-
hedral schema (P/ ~)a5 of M® with 2 vertices such that the associated
extended Heegaard diagram yields T.
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4. Crystallizations of n-fold cyclic branched coverings of $3
over 2-bridge knots

It would be nice to get explicit crystallizations of n-fold cyclic branched
coverings of S% over some knots or links. To authors’ knowledges, Ferri’s
paper[3] is only available source in this line of works. He suggested a
general method of constructing crystallizations of 2-fold branched cov-
erings of S° through bridge presentations of knots or links. But it seems
rather difficult to see how to extend his construction for n-fold cyclic
branched coverings even in simplest 2-bridge knots. On the other hand,
Minkus[5] has shown that n-fold cyclic branched coverings M,(k, h)
of S% over 2-bridge knots or links b(k, h) admit polyhedral schemata
presentations similar to those for lens space L(k, h).

For polyhedral schemata of M,(k, h), we consider n equally spaced
great semicircle S; joining the north pole N and the south pole S of S2.
We insert k — 1 vertices v, v},---,vi_, on S; so that v (resp. vi_,)
is the nearest vertex to N (resp. S), for each 1 < ¢ < n. Then $?
may be thought of as a polyhedron P with 2n (k + 1)-gons R;, R; by
inserting arcs ¢; from v}, to vi™} (i is reduced mod n), where subscripts 4

are assigned so that V, = {v}, vi,,,---, N,vi" wvitl ... oi*1} (resp.

Vi = {vi™t, vk, vk, Sovioy, viig,c-,vi_,)) forms vertices of
R; (resp. R;) and hence ¢; is 2 common edge of R; and R;;;. Now we
identify R; with R; so that ¢; = vi*}vi is identified with ¢, = v}_,vi ™!
while keeping the order of vertices listed in V; and V;. Then by uti-
lizing combinatorial covering space theory and splitting complexes of
Neuwirth [8], Minkus (5] showed that if (k, /) =1,h=1 mod 2and
1 < h <k, then M,(k, h) is the n-fold cyclic branched covering of the
two bridge knot or link b(k, h). Here the branched set in M, (k, h)isthe
fixed point set of a homeomorphism 7 : M,,(k, h) — M,(k, h) of period
n induced by a rotation ' : P — P by 27/n around the north-south
pole axis NS C P. Let a; = w(vivi_,) and ¢ = n(¢;) = --- = 7(cn).
Then the edges {a; : 1 <7 < n} must be distinct because 7(N.S) and ¢
is fixed point set of 7. Hence the 2-skelecton of M, (k, k) has 2 vertices
represented by {N, S}, n+ l-edges {a;: 1 < i < n}U{c} and n faces
7(R;) = n(R;). Moreover M, (2l + 1, h) is loopless because c has differ-
ent endpoints whereas c has the same endpoint in M,(2l, h).
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REMARK. If(k, h)=1,k=1 mod 2,h=0 mod 2and1 < h <
k. Then by schubert’s classification theorem (2], b(k, k)= b(k, k— h)
and k—h=1 mod 2. Henceforh=0 mod 2, M,(k, k—h) may
be thought of as the n-fold cyclic branched coverings of S% over b(k, h).

Except M,(k, 1), it requires knowledges on the sign e;(k, h) of cross-
ings of b(k, h) to figure out how the edges arrange themselves in the
2-skelecton of M,,(k, h). For details, see figure 4 for M, (k, 1) and theo-
rem 8 or lemma 9.1 for e;(k, h) in [5]. Furthermore, general description
of edge configurations such as M,(k, 1) is not available for h > 1 (see
Table 1 in [5]). But as far as crystallizations are concerned two classes
of 4-colored 4-regular graphs are required that admit following general
descriptions.

For 2h < k (resp. 2h > k), let P, (resp. P!) be a k + 1-gon with
vertices v;; (resp. vj;) for 1 <4 < n and Q (resp. Q') be a n(k+1—2h)-
gon (resp. n(2h —k + 1)-gon) with vertices w;; (resp. w};) for 1 <i<n
and 2h+1<j < k-1 (resp. 2k —2h+1 < j < k+ 1). Assume that
P; (resp. P}) and Q (resp. Q') is embedded in S%. Now we tesselate
S = S\ Uicicn P UQ (resp. S’ = S\ Ui, P/ U @) with 1 2n-gon,
n hexagons and n(k — h — 1) (resp. n(h — 1)) rectangles by inserting
arcs joining a pair of vertices of P; (resp. P}) or Q (resp. @Q'). For this
purpose, we make use of a planar presentation of S? such that P; (resp.
P/) are counter-clockwisely (resp. clockwisely) located inside Q (resp.
Q') for the increasing order of i where subscripts i are reduced mod n.
Furthermore we assume that w;; (resp. wj;) are clockwisely located on
Q (resp. Q') for the lexicographic order of i and j. Followings are lists
of arcs inserted for the tesselation of .S (resp. S') and hence $2.

(i) For 1 <i<nand 1< j<h (resp. 1<7<k—-h)

v;; (resp. v/;) is connected to v;_19411-; (resp. v£+1,2k_2h+1_j).

(i) For1<i<mand2h+1<j<k+1 (resp. 2k—2h+1<j < k+1)

vi; (resp. vj;) is connected to w;; (resp. wj;).

Up to this construction, we have a 3-regular graph K (resp. K')
embedded in $? with 2n(k — k + 1) (resp. n(2h +2)) vertices and hence
3n(k—h+1) (resp. 3n(h+1)) edges. Now by adding n(k — h+1) (resp.
n(h + 1)) edges to K (resp. K') we will get a 4-regular graph I'(n, k, h)
(resp. I'(n, k, h)). Followings are list of edges added.

(i) For1 <i<nand k—2h+1<j<k—h(resp. 2h—k+1<j < h)

v;; (resp. vj;) is connected to v;_;2k—2441-; (resp. Vi 1oni1-5)-

(iv) For1<i<nand1<j<k—2h (resp. 1<j5<2h—-k)
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v;; (resp. vj;) is connected to wiy1ont; (T€SP. Wiok—2h45)-
(v)For1<i<n

Vik+1 (Tesp. vj;) is connected to wiy1441 (resp. w_;,.,). Edge color-
ings of " and I are done as follows.
A. Edges of P, (resp. P}) and @ (resp. Q') are alternatively colored by
« and 3
B. Edges constructed by (i) and (ii) are colored by ~
C. Edges constructed by (iii), (iv) and (v) are colored by 4.

THEOREM 2. I'(n, k, h) (resp. I'(n, k, h)) is a crystallization of
M, (k, h)if2h < k (resp. 2h > k),where (k, h) =1, k,h =1 mod 2
and1 <h<k.

Proof. We prove the theorem for 2h < k since proof for the other
case is analogous. By lemma 3 and proposition 1, we have n meridians
m; = RN(K1) N7w(R;) of H, = M,(k, h)\RN(K;)1<i<mnandn+1
extended meridians m; (resp. m;,;) of H), = RN(K}) corresponding to
edge a; (resp. ¢) 1 < i < n, where RN(Kj)is the regular neighborhood
of the 1-skelecton K; of M,(k, h). Then for each 1 < i < n, there
exist k edges e;; = vivi_;, €, -+ ,ex of P such that a; = 7(e;) =
m(ei2) = -+ = m(ex) Take a neighborhood N;; of €; ; in P so that 7(N; ;)
contributes one of k-pieces of regular neighborhood of a; for 1 <i < n
and consider m}; one of k-pieces of m; lies on dm(NN;;) in such a way that
m; N M = {m;|1 < j < n} consists of k endpoints of mj;. In particular,
let v;; be one of endpoints of m!, lying on m; C 7n(R;) = n(R;) for 1 <
i < n. On the other hand, the meridian m/,_; corresponding to ¢ meets
with m; only once, say at v;xy; for each 1 <7 < n. Then kn endpoints of
m;; including vy and vk (1 <4 <n, 1< 5 <Kk) are located on m; so
that each m; contains k + 1 points v;;, v, -+ ,vs4 arranged counter-
clockwisely on R; and hence arranged clockwisely on R; where we utilize
the same notation for v;; and 77(v;;). For each edge e of P, there is
a pair {v, v} uniquely determined by e such that a segment Upgv,,
meeting e transversely presents a part of the meridian corresponding to
w(e) € {a;|1 < i <n}U{c}. Hence all (k+ 1)n number of such segments
constitutes extended meridians M = {m}|]1 <i <n+1}. a
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Now we show how to get a cutting meridian with respect to M
in P(M, MY%). The polyhedron P is divided by two regions Rt =
Ui<icn Ri and R~ =, .., Ri. Let W be the common boundary of R*
and R~. Since all m; (resp. m;) are located in the interior of R+ (resp.
R~) and each edge e of W determines a unique segment 7,;7,; meeting
transversely with e in our presentation of P(M, M), W plays a role
of a cutting meridian with respect to M in P(M, M;). We denote wy,
by the transversely intersecting point of e and T,7,;, where v,, € R* and
vrs € R™. Figure 3 are examples of crystallizations of M, (k, k), where
we take a convention that each pair of vertices with a same number is
joined by the last colored edge.
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COROLLARY. ¢(n, 3,2, 1) is a crystallization of n-fold cyclic branch-
ed covering of S3 over the trefoil knot, i.e., b(3,1).

Proof. 1t is easy to see that ¢(n, 3,2, 1) is isomorphic to I'(n, 3,1). O

Mandel and Lins pointed out a family of homology spheres in crys-
tallizations ¢(n,3,2,1). For details, see theorem 11 in [7]. This can be
deduced from the above corollary and first homology groups of M,(3,1)
in {11, p. 304].

When b(k, h) is a proper link, i.e, Kk = 0 mod 2 then the 1-
skelecton of the associated polyhedral schema M,(k, h) contains a loop,
hence the method in theorem 2 can not be applied.

PROBLEM. Find explicit presentation of a crystallization of M,(k, h)
as theorem 2 for k=0 mod 2.
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