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MEASURE DERIVATIVE AND ITS
APPLICATIONS TO o-MULTIFRACTALS

TAE Sik KiM, TAE HOON AHN AND GWANG IL KiM

ABSTRACT. The fractal space is often associated with natural phe-
nomena with many length scales and the functions defined on this
space are usually not differentiable. First we define a o-multifractal
from o-iterated function systems with probability. We introduce
the measure derivative through the invariant measure of the o-
multifractal. We show that the non-differentiable function on the
o-multifractal can be differentiable with respect to this measure
derivative. We apply this result to some examples of ordinary dif-
ferential equations and diffusion processes on o-multifractal spaces.

1. Introduction

Recently there have been many attempts to investigate the fractal
sets and apply them to the multiple length-scale phenomena of the na-
ture [5]. The archetype property of the fractal sets is identified as the
self similarity. The simplest sets with these self-similar properties can
be obtained by using the iterated function systems [2]. The iterated
function systems have been widely studied since they can be applied
to the various branches of science, for example, the image and signal
processings [3] and the crystal lattice dynamics [4]. Now the math-
ematical research on the anomalies of fractals includes the studies of
quantum mechanics with fractal support [9] and the Schrédinger equa-
tion in complex fractal graphs [10]. There have been continuous efforts
to apply the fractal geometry to understand diffusion in fractal media
by means of fractal operations [6].

In the studies of fractal phenomena, it became increasingly evident
that the mathematical calculus, which is not appropriate on fractals,
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should be extended to the fractal space. For example, Kigami at-
tempted to develop calculus on the self-similar fractals based on the
harmonic measure [8] and Giona generalized the ordinary differential
equation to the fractal support with the help of corresponding integral
equations [7].

In this paper we first define the o-multifractals with the help of
o-iterated function systems with probability and introduce a measure
derivative on these sets. We show that the non-differentiable function
on o-multifractal becomes differentiable with respect to the measure
derivative. As an illustration, we apply the measure derivative method
to some examples of ordinary differential equations and diffusion pro-
cesses on o-multifractal processes.

2. o-iterated function systems and o-multifractals

Let X = U, X; be the union of non-overlapping metric space X;’s
with metric d And suppose that for each Xj, there exists a finite
number n; of contraction maps w; = (w},wf, -, wit) on X;, w
X; — X;. Then there exists the invariant set J;, called the self- szmzlar
set, such that

F; = U] LW (.7: )-

This self-similar set is a typical type of fractal sets and in some cases is
simply called the fractal. In order to treat a more general form of these
similar sets, we define the o-similar set, F = U2, F;, and consider the
measure structure on this set. For each i, let the probability vector p; =
(pt,ph,--- ,ph.), in which 0 < p} <1 and Z 21 P; = 1, be associated
with the map w;. Then (w;,p;) is said to be the iterated function
system with probability (IFSP) [2]. We also call {w = (w;),p = (pi)}
the o-iterated function system with probability (o-IFSP).

Let M(X;) be the space of all probability measures defined on the
o-algebra of the Borel sets of X;. Then the Markov operator T; :
M(X;) —» M(X;) defined by

ijm o (wi)"HA), me M(X),

has a unique invariant meaure y; with support on F; such that

Ti[ps) = ps-
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And define the measure u = Y o, u; on the attractor of o-IFSP (w, P)
by

w(E) = wi(X; N E).
=1

Then this measure has support on the o-similar set, F = U2, F;. We
can see that F has a multi-fractal structure. So from now on, we call
this set, F, the o-multifractal with invariant measure (. or simply the
u-multifractal.

3. Measure derivative on c-multifractals

Let F be a p-multifractal, that is, o-multifractal with invariant mea-
sure p as in Section 2. And let A be a p-absolutely continuous mea-
sure on F, that is, A << u. Then by the Radon-Nikodym theorem
[10], there exists a p-measurable function f on F, denoted formally by
gi% = f, such that

A(E) = [E F(@)dp(w).

From now on, we focus on the y-multifractal F in R.

DEFINITION 1. Let F be a o-multifractal, A be the measure defined
above and let F be a function defined on ®. Then for z € F, the
measure derivative of F(zx), (—iy‘[’laF(:c) = D)F(z), is defined by

d .
WF(ZE) = lim[F(z + k) — F(e ~ h)l/A(z —h, z+ h)},
when the limit exists.
REMARK 1. When ) is Borel measure and Z = {--- ,—1,0,1,---},

the measure derivative of the continuous function F' at a.e. = can be
defined by using the dyadic intervals, that is,

d
- tm (F Cnys
e F(z) nll)n;o[ (k+27"(i+1)) |
— F(k+2"")/AN(k+27™, k+27"(+ 1)),
where (k + 27, k+ 27"(i + 1)) is a dyadic interval of length 27"
containing z, k€ Z, i =0,1,--- ,2" — 1.
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Let X; = [a;, b;] be the closed interval and {wf}}i, be given such
that w}(a;) = a;, wl (b;) = b; and
dist{w! (X;), w}(X;)} > max{diam[w? (X;)], diam[w!(X;)]}

for each neighboring interval w?(X;) and w!(X;). Then F is a general-
ized Cantor set as a y-multifractal.

THEOREM 1. Let F be a generalized Cantor set defined as above
and F be a continuous function defined on R such that

F(z) = F(wl* ow? o - o wl*(b;))

for each = € (wf1 ow?o---0 w”‘(bi), wh owl 0---0 w?(ai)) where
w{‘ owlo-. -ow?*(X;) and wi owé2 o 1. (Xi) are the neighboring
basic intervals. Then
d
——F(z
dulz] (=)

= i Pl 0wt o ouf (b)) — Flwf oo -0 wf(a:))

k— oo p?lp—?z . .p?k ’
for almost all z € F such that x € N2 Jwit ow!? o ow!*(a;), wl o
wi?o--. o’wJ-'“(b-)].

Proof For each z € F;, there exists a sequence (J1,72,-7), Jk =

1,2,---,n;, such that z € ﬂk 1w ow]2 -ow?*(X;). Then for each
basic interval w?* ow?? o- owi*(X;) = [le ow’2 o- ow”‘(ai) wJ1 o
wfzo'--owf"(b,)], let hy = w! ow”o -ow?* (b;)— w“ow o- - -ow] (a,)
Then hy (0 as k£ — oo and by the invariance of p,

wlz —h, =+ h)

_N([ o w;? -owf"(ai), wfl ow{zo---owg"(bi)])

et

Then as in Remark 1,

Fwf* owf? o owl* (%)) — F(w] owf* o--- o wl*(ay)

k00 ol gu
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PROPOSITION 1. For Dj-differentiable functions, F and G on F,
and two real numbers a and b, we have
(a) giyleF(z) +bG(z)] = a g F(x) + b7 G(z),
() K F(@)G(@)] = [ F(@)]G(z) + F(z)[ 735 G(=)).

In [6], Giona defined the derivative D, on IFSP with invariant mea-
sure u as the inverse operator of integration, that is, when

I,F(z) = /0 " Flw)du = G(z)

he defined Z;'G(x) = D,G(z) = F(z). And he used this derivative to
transform a differential equation to the integral equation. In follow-
ings, we show that the measure derivative coincides with the Giona’s
derivative in this sense. Therefore, we can efficiently transform the
integral equation into the differential equation on fractals and investi-
gate the diffusion process on fractals through the differential equation
under the measure derivative.

PROPOSITION 2. Let u and X\ be defined as above and define

wm=£3wmmm

and [v(z)]™ = v™(z). Then
(a) Dx"(z)] = Da[v"(2)).
(b) Let F(z) be an infinitely Dy-differentiable at x = a. Then F(z)
can be extended to the following form of Taylor series on a neigh-
borhood of x in which the series converges:

1) F(z) = anlv(z) - v(a)]"

n=0
where a,, = Dg‘n)F[v(a)]/n!.

Proof. (a) d)\dz] v(z) = limy_,o f_:j: dMw)/A(z — h, =+ h)] = 1.

Then d
v(z) = n[ (@) @) = (),

dA[z]

dA[z]
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by Proposition 1. Now put vp(z) = 1, v1(z) = v(z) and define v,(x)

by
_ /0 e /0 Dons)+ [ fe)dutz)
=/0 dX( mn)/ dM\(Zn-1) / dA(z1)-
Since
oz z T V'n.—l
n(! ) = vp(z) = /0 Un—1(w)dMw) = /0 (T_—%d/\(w),
we have

v z) = /01 v (w)dA(w).

Therefore Dy [v"(z)] = Iy H[v"(z)] = nv""}(z) and
) D@ = D) = @),

(b) A series expansion can be done similarly to the usual calculus. O

4. Applications

It can be shown that when F(x) defined on R is differentiable in
usual sense, it is also Dj-differentiable since R can be regarded as
the o-multifractal with Lebesgue measure. But the converse does not
hold in general. For example, the Cantor ternary function F(z) is not
differentiable on the Cantor set in usual sense. However, for the s-
dimensional Hausdorff measure, A, with s = log2/log3, we have for
every z € C,

T —n jq—ns __
D@ = i s =1
Thus the measure derivative is well-defined and can be seen as a gen-
eralized form of the derivative on fractals, which can be applicable to
the motion on the o-multifractal F.
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4.1 Differential equation on o-multifractals with respect to
the measure derivative

Let z € R, y and H are n-dimensional vector functions defined on
R and R™, respectively. Then the solution of the Cauchy problem

dy
3) T oHy@),  ¥0) =,
has a unique solution in a neighborhood of x = 0 when H is Lipschitz
continuous. Note that the above differential equation in (1) can be
recast in the form of a nonlinear Volterra-type integral equation

y(@) = yo + /O " Hly(©)lde,

which is particularly useful in functional analysis.

From this point, we can extend the initial value problem involving
ordinary differential equations on R to one in o-multifractal. That
is, supposing that y and H are real valued functions defined on R,
the differential equation in (3) is extended to the o-multifractal F as
follows:

(4) MM=HMM, y(0) = yo,
y=1o+ /0 Hiy(w)dAw),

where the integral on the right hand side also exists under the condition
of Lipschitz continuity of H.

EXAMPLE 1. Let X; = [i, i+1], w}(z) = Jo+%, wi(z) = Jz+i+1
and p} = p? = 1/2 for all i € Z. Then F = R and p is the Lebesgue
measure. Thus for A = p, v(z) = A([0, z]) = z and d\(z) = dz. Thus
in this case, the equations (3) and (4) coincide.

Since the solution of the usual Cauchy problem in R has the form
of

(o ¢]

y(z) = Z anx”,

n=0
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we can see that the solution of a similar Cauchy problem in the o-
multifractal F also has the form of

y(@) =) anlv(@)]",
n=0

from Proposition 3.

EXAMPLE 2. As in R, we define the exponential type function on
the o-multifractal F by

(5) explv(z)] = ) [v(2)]"/nl.
n=0

Then it can be easily shown that y = y exp[kv(z)] is the solution of
the differential equation

T = k@), ¥(O) =ve,

on the o-multifractal F with respect to the measure.

In the following figures, we show the graphs of two functions on
the subset [0, 2] of o-multifractal generated by the IFSP in Example
1 where probabilities, for example, are chosen to be pj = 1/5 and
p} = 3/4.

v(x) explv(z)]

b3 1 1.3 H 0.3 1 1.3 2

Figl. y =v(z) Fig 2. y = exp[v(z)]
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4.2 Multifractal diffusion process on the o-multifractals

Let F be the o-multifractal with invariant measure y and let A and
v be defined as in Section 2. For the random variable X; of F defined

on the probability space Q@ with probability measure P, define X, (t)
by [X,(t))(w) = v[X¢(w)] for each w € Q.

DEFINITION 2. The process {X,(t) : t > 0} is the multifractal dif-
fusion process on F with drift § if

- (i) it has a stationary independent increment,

(i) it has a distribution of

(X,(8)) = X, (0) + 8, ([X,.(t) — X,(0)]?) = ¢ and
(X, (t) = X, (0)]F) ~ ot) for k > 2.

NOTE. When X, (t) is normally distributed with X, (0) = 0, it can
be seen that X,(t) = B(t) + 4t for the standards Brownian motion
process {B(t)} on R. However, in this paper X, (t) does not need to
be the Brownian motion process.

Let X, (t) be distributed with the density function p[v(z),t] on v(F).
Since P[X,(t) € B] = P[X(t) € v™}(B)] a.e.[\], we can define the
probability density function p(z,t) on F such that

/ plz, H)dA(z) = / Bl(), t)dv(z).
v=1(B) B

From the independent and stationary increment, the conditional
probability density of X, satisfies

plv(z),t + s55v(y), 8] = BXu(t + 5) = v(z); X (s) = v(y)]
= ﬁ[V(.’E),t; V(y)> O] = ﬁ[l/((l?), t; V(y)]

which corresponds to the conditional density function p(z,t;y).

Now we will show that the above definition is reasonable in that
the conditional density function satisfies two types of the diffusion
equation, Kormogrov’s backward and forward diffusion equations (also
called Fokker-Planck equations).
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THEOREM 2. The conditional density function p(z,t;y) defined
above satisfles the Kormogrov’s backward diffusion equation, that is,

2
;af[ ]2p($ ty) + éa)im]p(w,t;y) = %P(x’t?y) ae. Al

Proof From P(X(t) E Asy) = [y p(z, ty)dN ) = [, [-p(zh, Biy)
p(z,t — h;zh)dN(zn)dN(z) = [, Elp(z,t — by :vh)]d/\( ), we have

p(z,t;y) = Elp(z,t — h; X (h))] a.e.[A].

Recall that (X, (h) — v(y)) = 6k, ((X.(h) —v(y)]?) = h and (X, (h) —
v(y)]¥) ~ o(h) for k > 2 from the definition. We expand the right
hand side of the above equation in Taylor series about (z,t¢;y) as in
Proposition 3(1) and use the change of variables so that

p(z,t;y)
= E[p(.’L’, t— h'; X(h))]
= Blpla,t52) + (—h) 5rp(e. 68) + (X(h) =) g5p(e )

W2 (X(h)—y)? 0
+ ?atQP(:%tvy) + 2 6)\[ ]2p z,t; y) +- ]

= plo.51) — hppla,t59) + BICG() — )Y gysplan i)

2 52 a2 52
+%§t§p(w,t;y) Bl V(h2 w }]8ﬁx]2p(az,t;y)+---

o 0
=p(z,t;y) — hap(-’”,t, y) + 5hmp($,t, )

2
- 5GP i)+ ofh).

Rearranging terms and then taking the limit A — 0, we have

1 92

20Nz ]21’( p(z, t;y) = gtp(x,t;y).

)
xty)-l—&a)\[]
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THEOREM 3. The conditional density function p(z,t;y) defined
above satisfies the Kormogrov’s forward diffusion equation, that is,

2
;af[ ]2p( 6Y) = 586[ ]p(mty) atp(wty)

Proof. The proof is similar to that of Theorem 1 except that we
work with conditioning on X (¢t — h). O

As an example of the diffusion process on multifractals, consider a
random walk on the o-multifractal.

ExXAMPLE 3. Let Z be the set of integers. And let X; = [1, i+1] for
i € Z wiz) =1} x+(1 rl)i and wf(z) = riz+(1-72)(1+4) with 0 <
pr, pr<1,0<7} r2andr! +72 <1 for all i € Z. For this o-IFS, o-
multifractal set 7 C §R isa countable union of Cantor type sets with an
independent geometric structure. Now we define some Brownian type
motion on this fractal with respect to its invariant measure. Suppose
that at every time step of At, a particle standing at z; goes to either
z;+1 with probability p, 0 < p < 1, if v(z;41) — v(z;) = Av, or ;41
with probability 1 —p if v(z;) — v(z;4+1) = Av. Suppose that v(zg) = 0
for the initial state xg of the process. Let

_ { 1 ifv(zio1) — v(z) = Av,
Ll v(z;) = v(zi—1) = Av.

When X (t) denotes the position during time ¢, we have
X, (t) = Av(X;+Xo+--- + X[t/At]))

in which [t/At] denotes the largest integer not greater than t/At. Since
for each 1,

(X;)=2p—1and (X?) =1-(2p—1)?

we have

(Xo(t)) = Avjt/At](2p — 1)

and
(Xo()?) = AVPlt/A)(1 - (2p - 1)?).
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Put Av = VAt, p = 1/2(1 + §v/At) and let At — 0. From the
central limit theorem the distribution of X, () converges to a normal
distribution such that

(X,(t)) — 8t and (X,(t)}) —t.

Thus we define A-Brownian-type motion {X,(¢) : ¢ > 0} on the o-
multifractal F so that X,(¢) is normally distributed with a mean
X,(0) + &t and a variance ¢ with respect to the measure A, that is,

plz,y;t) = 1/v2ntexp[—{v(z) — v(y) — 6t}*/21],

where exp[v(z)] is defined as in (5). Clearly the above process {X,(t) :
t > 0} is the multifractal diffusion process from Definition 2 and so
p(z,t;y) satisfies the diffusion equations, which can also be shown by
direct differentiation using (2).
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