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MANIFOLDS WITH NONNEGATIVE RICCI
CURVATURE ALMOST EVERYWHERE

SEONG-HUN PAENG

ABsTRACT. Under the condition of Ricyr > —(n — 1)k, injas > g,
we prove the existence of an € > 0 such that on the region of volume
€ > 0 the curvature condition of splitting theorem can be weakened.

1. Introduction

It is an important problem in Riemannian geometry to classify the
complete Riemannian manifolds by curvature conditions. Splitting the-
orems are concerned about the non-compact manifolds with nonnega-
tive curvature. Using splitting theorem, we can prove that some finite
cover of a compact Riemannian manifold with nonnegative Ricci curva-
ture can be splitted to T* x N, where N is a compact simply connected
manifold and T* is a k-torus [3]. In [6, 8], we prove sphere theorems
under weaker curvature conditions than the standard Ricci curvature
condition Ricpys > n — 1, i.e., Ricci curvature and injectivity radius
bounded below and Ricps > n— 1 on M — A where diameter of A,
diam(A) or volume of A, vol(A) are sufficiently small. Similarly to
sphere theorems, we will prove a splitting theorem of compact space
also holds even if the Ricci curvature conditions are not satisfied on
the region of small volume.

Let M7 , be the class of n-dimensional complete Riemannian man-
ifolds with Ricps > —(n — 1)k and the injectivity radius injas > 4. We
obtain the following theorem:;

THEOREM 1.1. Let M € M7 , and diam(M) < d. Then there
exists an € > 0 depending only on ig,n, k,d such that if Ricps > —(n—
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1)e on M — A, vol(A) < ¢, then M is diffeomorphic to T* x N up to
finite cover, where N is a simply connected space.

This theorem is a generalization of the following theorem due to Cai
[2].

THEOREM 1.2. Let M € M(ip,n,k) and diam(M) < d. Then
there exists an €(ig,n, k,d) > 0 depending only on n,tg, k,d such that
if Ricpyr > —(n — 1)¢, then M is diffeomorphic to T* x N up to finite
cover, where N is a simply connected space.

We use the compactness theorem due to Anderson and Cheeger [1]
and the rigidity result in a fixed small ball [7, 4]. The following notation
will be used; if we fix &1, - - , 8,, then 7(d1,- -+ ,dnle) — O and 7(¢) — 0
ase— 0.

We would like to express our gratitude to Professor Hong-Jong Kim
for much kind and helpful advice.

2. Preliminaries

In Preliminaries, we show that the conditions of Ricpyr > —(n — 1)k
and injps > ip make exponential map almost isometric on a ball of
fixed small radius which depends only on n, k, 7.

By Brocks’ estimate on the Laplacian of the distance function, we
obtain the following Jacobi field estimate on io/2-ball B(p,i0/2) [4, 7,
8]. Let M be a complete Riemannian manifold with Ricas > —(n—1)k,
injps > 49 and y(t) be a minimal geodesic starting from p and Y (¢) is
a Jacobi field along v such that Y(0) = 0,(Y’(0),7'(0)) = 0. Let
d(v) be the distance from p to the cut point on . Then iy < d(v).
Define A := VVr = Hess r, so trA = Ar and Y/ = AY. Write
A(t) = B(t) + I/t. We know

[ 11811 < Dlio,n, k),
0
for some constant D(ig,n,k) [4, 7]. Then we have

e P [Y/(0)]] < IIY11(r) < €7 rilY ]I (0)

for some constant D = D(ip,n,k) if 7 < 40/2 [4, 7, 8]. In Euclidean
space, we know that D = 0. For any € > 0, we can choose a uniform
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ro > 0 which is depending only on n,k,7y such that Drl/2 < ¢ for
r < r9. Then

||dexp(v)||

1—-€e< min{—-————
{vl|

lveT,M, z € B(p,ro)}

ldexp)] | g g 6
Sma.x{ ol | ve TeM, z € B(p, o)}§1+

on ro-ball by the above inequality. So we can find a uniform rq > 0
such that the exponential map is almost isometric on ro-ball.
Furthermore, we know that

(2.1)  —(n—1)kcothk(d(y) —t) < Ar(y(t)) < (n —1)kcothkt.

For the proof, see [1]. Then by the Riccati equation, we get the follow-
ing estimate for r < d(y) — 6,

[|A||2 < —trA’ — Ricy.
Then

/ 14)2
i0/2

< —trA(r) + trd(ip/2) + (n — 1)kd(y)

< (n—1)kcothk(d(y) —r) + C(io,n, k) + 2(ni0— D + (n — 1)kd(v)

< (n—1)kcothké + C(ig,n, k) + 2(%_—12 + (n — 1)kd(7)
0
< F('L.Oa n, ka 6) d(’)’)),

for some constant F' depending only on ig,n,k,§,d(7y) since cothz is
decreasing function. Then

/ " 14l < (@) / ")y
20/2 10/2
_<__ V d(7)F(i07n7k:67 d(7))1/2 = Fl(i(),n,k751 d(7))a
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for some constant Fj.

r i0/2 r
/|wwi/ +/ IB|
0 0 i0/2

. . r 1
SD%m$)mﬂ+/ (1Al + 3
i0/2 i

2
< D(ip,n, k)\/i0/2 + F1(i0,n, k,0,d(7)) + -

0
< F2(i07na k’ 5’ d(’Y))’

for some constant F5. Then by the same method as above, we also get
a uniform lower bound and upper bound of the ||Y|| depending only
on n, k,%p,d,d(y) on t < d(y) — 4.

3. Estimate of the volume of the bad part

For the simplicity of argument, we only consider the sequence (Mj, g;)
in M2 satisfying the conditions diam(M;) < d, Ricps; > 0 on M;—A;
where vol(A;) < ¢; and ¢; — 0. Then we know that the universal cov-
ering space of M;, M ; converges to a compact subset of C*-Riemannian
manifold X on compact subset. Shortly we use A; instead of the lift-
ing of Aj, fij. Fix a point p; € M;. We may assume p; € Mj. Let
Yo(t) = exp,, t0 and p is the measure on vy. We use the following
notations;

d’(6) = the distance from p; to the cut point in the direction 6,
where 6 € "' C T, M;,
0l = {0 € 8" C T, M; | (v ([0, (6)]) N 4;) < e},
7 5(8) = inf{s | s > &, 6 € (©1)°, u(vs([d,5]) N A7) > e}.

LEMMA 3.1. For any fixed D > 0, lim;_,o vol({exp, t0 | 0 €
©7)¢, §75(6) <t < min(d(6),D)}) = 0.
€ €,0

We can consider {exp,, t0 | § € (1), 53’5(0) <t < d(f)} as abad
part for applying the Bishop-Gromov theorem. We want to show that
this bad part can be ignored.
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Proof. Assume that M is an element of M%,k. Let {u,e1,-* ,en—1}
be an orthonormal basis for the tangent space at some point ¢ € M
and let Y;(¢) be a Jacobi field along v5(t) = exptf such that Y;(0) =
0,Y/(0)=e; fori=1,--- ,n—1.

Define

—(n-1) YN if t<di
J(u,t) = { t (detg(Y;,Y;))z if ¢t < d?(0)

if t>di(6).

Then for a region A in the unit sphere of the tangent space T, M,
to
vol{exp,t0 | t1 <t <tz, 0 € A} = / / J(u, t)t" " dtdu.
AJdt

Let J7 and J_i be the J of M. ; and the space form with constant curva-
ture —k, respectively and b7 (u, t) = J3(u, t)ﬁt, b(u,t) = J_i(u, t)ﬁt.
b(u,r)

In the proof of the Bishop-Gromov inequality, we see that b(u,a) =
b

b(u,r)

b(u, a)
tively. We define

Cs? = ma.x{l_)(u’r) | r,s € [tl,t2]}.

, if 7 > a. Simply, we use J and b instead of J7 and ¥/, respec-

b(u, s)

If vol((©7)¢) — 0 then there are nothing to prove by the Bishop-
Gromov theorem. So we assume that lim;_, o vol((©7)¢) > 0. Let

& := {9 € (©1)° | b"=1(8,r) > €%},
A;Mve
Then vol(4;) > e;/zvol(d)Z). So vol(®?) < e;/z — 0 as j — oo which
is a contradiction.
Now we may assume that for every direction 8 € (©7)°,

/ (e, r) < e;/z.
YoMNA;
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Then we know that for any € > 0, there exists a ¢ > 4 such that
1/2

"0, c) < JT and p(ye[d,¢] N A;) < e. From this fact, we know
that ¢ < Sg’ s- Then by the above inequality, we get

(/2

(3.1) b 1(0 r) < (CD)n 1yn— 1(0 ¢) < (CD)n 1 J6

for .S'J(s <r < D. Sob"}0,r) < 7(J,€le;) for r > 52,5.
Let

A;(D)(6,¢) := {expth | 6 € (©9)°, Sfﬁ <t< D}.

Consequently, vol(A;(D))(d,€) = f(e’)c fs, b"1(0,t)dtdf — 0 as j —
oo. This completes the proof. 0

REMARK 3.2. By the above proof, we know that if p; = el/ then
p; — 0 and

11_13.10 vol({exp,, t0 | 0 € (87))°, S}, 5(8) <t <min(D,d’(6))}) = 0.
This value p; will be used in following sections.

4. Proof of Theorem

We will prove that the limit space X = R* x N where N contains
no line. Then we can prove Theorem 1.1 by a contradiction.

Shortly, we use A; instead of the lifting of A;, A;. Let v; be a line
in M; and ~;(0) = p;. Then +; converge to v in X and we may assume
that p; — p. We follow the proof in [9)].

We know that vol(M;) > wvi(io,n,k) and vol(B(vi(t:),2t;)) <
va(n, k,t;) for some v1,v2. Then the number of fundamental domains
in B(v:(t:),2t;) is bounded by n; = ni (i, n, k, t;) := va/v1. Let

= (niei)1/4
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as Remark 3.2 where ¢; will be chosen below. Let vg_(0) = z. Now we
use the similar notation as previous section;

©'(z) = {0z € "1 C TuMi | p(ve, ([0, d°(62)]) N As) < pi},s
Si(0;) = inf{s | s > 6, 6, € (0%(x))°, u(ve,([6,5]) N A;) > pi}.

We use ©° instead of ©%(v;(¢;)).

Let R;(6) be a é-tubular neighborhood of the cut locus of ;(t;). We
also know that the volume form b,,(;,)(t) has a uniform lower bound
Hy(i0,m,k,0,t) > 0 on R;(0)° as we see in Preliminaries.

Put D to be a bounded domain with smooth boundary in X and F;
be a diffeomorphism from D to a domain D; in M;. We consider D;
as D with a metric F}"g; where g; is the metric on M;. Define

B (z) = d(vi(£t:), @) F ti,

and
B(z) = lim BX(z).
71— 00
It is an essential part of the proof of Theorem 1.1 that AB* =0, i.e.,
Bt is a harmonic function. If we assume the almost nonnegativity of
Ricci curvature, we need not check that B is a harmonic function [2,
10]. But in our case, we must show that B is harmonic.
Now we choose t; such that

n1 (io, n, k, ti)Ei — 0,

pieIO(n—l)kti N 0,
pi610(n—-1)k’ti
HO(iO) n, ka 5) tz)

—0

and t; — oo as ¢ — oo. It is possible to find such ¢; by passing to
a subsequence if necessary since we know ¢; — 0. We will show that
the limit of Bj' has properties as Busemann function. Let d*(d) be
the distance from ~;(t;) to the cut point in the direction § € S*~1 C

T’Yi(tz')Mi’
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Then we also know that D; C B(v;(t;),2t;) as ¢ — oo and the
volume of bad part

Wi = {exp, ) t0 | 6 € (0%)°, Si(6) <t < min(d*(6),2t:)}

converges to 0 as ¢ — oo by the choice of ¢;, i.e., 7; meets at most
n1(i0,n, k, ;) fundamental domains so we may consider the volume of
lifting of A; as ni(io,n, k,t;)e; — 0. Precisely we get that for some
constant Hi(n,k,d)

e:Y1/2
_ (4.1) b:i_(tli)(r) < (Cgt,-)n—lg% < Hl(n,k’é)piGZ(n—l)kti,
(3

as (3.1) since the exponential growth rate for CJ is less than (n — 1)k.
Then

2t;
ol = [ [0 Sen sk e D~ 0,

by the choice of ¢;, where w,,_1 is the volume of the standard (n — 1)-
sphere. If 7 is sufficiently large, ABf (z) has an upper bound (n —
1) coth kd(v;(t:),z) < Hz(n, k) for some constant Hz(n,k). Since the
volume of W; converges to 0, we may consider the integration only on
{exp,,(;,)(t©*)} for computing the upper bound of lim;_,o, I} D, AB}.
Let 79 C M; be a geodesic from g in direction 6 and ® : [0,00) x
S™~1 . M; such that ®(r,8) = expy(r8). Set ®*vy, = a(f,r)drdf and
b= a1, where vy, is the volume form of M;. Then we know that

SN
b,,+RIC(’7,’y)b <o.
n—1

For the proof, see [5]. In the case of the space of constant curvatures,
the equality holds. So for R",

¥ =0.

In this section, we only consider the direction 8 € ©%. If y4(r) € AS,
then o _
(b"b — b"b)(r) = (b"b)(r) <0,
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and if y4(r) € A; and r < d;(0) then
49 ("6 = b"b)(r) = (" + b)b)(r) < (k + 1)b(r)b(r)
( . ) <C (’io,n, k)e2(n—1)kr,

for some constant C; depending only on g, n, k. From this, we get

(b —b'b)(r) = / ¥'b—b'b < Ci(ig, n, k)p;e2DEr,
0

Then we have

(4.3) o
¥_ g (r) = Jo b —b"b < piCi (i, n, k)e2(m—1kr
b b/ b(rb(r) b(r)B(r) )
v ) . 2(n—1)kr _ A(n—1)kts .
vy pGlnn e P LA K
L b(r)b(r) i 5 H

on R;()° as ¢ — oo by the choice of ¢; and we may assume t;/2 <7 <

b (.
Combining (4.2), (4.3) with the fact (n — l)b’y’—(t’) = AB}, we get
i (ts)

ABFdV < ( / + / ) ABFdV
U, U,‘—R,‘((S) U,‘ﬁR,‘((s)

(4.4)
< / ABFAV + Hy(n, k) / v
U;—Ri(8) U:;NR;(6)

< 1(dle;) + 7(8),

for any fixed U C D. We can choose § > 0 arbitrarily small.

LEMMA 4.1. Bt (z) > w;R"fB(x R) BT for fixed small ig/2 >
n—1 ’

R>0andz e D.

Proof. Let (r,0) be the normal coordinate system centered at z.
The metric g° of D; can be expressed as ¢g° = dr? + r2g}, d6;dfx, 1 <
I,k <n—1. Let G* = det(g},). It is known that

n—1 OlogvG
+ .
r or

Ar =
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We know that Hy < VG(r) < Hs for r < 40/2 from Preliminaries.
Using this fact with (4.3) we obtain

VGt - O (i 2n—1)kr
hm 1 - VG — hm Ai’f' _ n 1 < poI(Zo,’n, If)e - 0,
isoo \/Gi Or i—00 r b(r)b(r)

on V; := {expt®(z) | t < d*(6,)}. Furthermore on V;,

(4.5)

VGt VG 2t;p;Calig,n, k)3 Dk
1- + < . . < M ? l
ilgloB’ or ~ zll)rglo 24 or ~ b(r)b(r)

by the choice of ¢; and VGE < Csio,n, k)el"~ ¥ for some constants
Cs,Cs.

Take ¢* € C$°(R;(6)) such that ||¢¥|| < 2 and limy_;e0 #* = 1in the
distribution sense and ¢¥ = 0 on the cut locus of 7;(t;), where C§°(D)
is the class of C®-functions with compact support in D. Then B;F ok
is a smooth function. Since B} ¢¥ — B;" in distribution sense, we also
have A(B;f ¢t) — AB}' in distribution sense. By (4.4) and divergence
theorem,

0> lim A;Bf = lim lim Ni(BF ¢F)
i—00 J B(z,t) i—00 k—00 B(z,t)
(4.6) o(B 65)
= lim lim e t""l\/—C—ﬁdO,

1—00 k—00 8B(z,t) 67'
where 0 < t < R. We know that

1 VG
VGi Or

for some constant Hg since

(B:_(]Sf) S Hﬁ(i07na kat)tz

[|Ar —

":1|| < Clio,n, k)

by [4]. Also we have

tivol(VE N Bz, t)) < HitipieX™ D — 0
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from (4.1). So we obtain

hm/ / B,+¢’°a” dodt
dB(z,t)NVF

) 11— 00
(4.7 v/
= lim / / B+¢k /-—1 AL VGidodt =
i—00 8B(z,t)NVe
Using (4.6),
i
lim lim Bj ¢i’c ?\/—é_de
i—00 k— 00 8B(z,t) or
1
> (Bt ok
v zl—lglo klggo tn—1 ./B(z,t) BBl 4:)
+ lim lim B oF 8_‘2‘10
i—oo k=00 8B(z,t) Br
(4.8)
> lim lim / +/
i200 k=00 \ JoB(z,t)—V; 8B(z )NV,
d(B{ ¢%) + k00
( 0 e+ (ot 25
= lim lim jd__ Bj‘bi’c VGido.
i—oo k=00 dt JgB(z,¢)
Then we get

wpn—1Bt = lim wn_lB = lim lim w,_ 1B q$Z
i—00 i—00 k—00

in distribution sense and from (4.7) and (4.8),

lim lim w,_ 1B+¢k( )

t—o0 k—o00

135

v WG
> lim lim —5_—1 / Bf ¢k - / / B¢k~ — | dfdt
imook—oo \ 1" Jop(s r) o JoB(z) or

1
" JoB(z,r)
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Integrating this over (0, R), we obtain that

1
BT (z) > lim hmﬁ/ B;"¢f=—ltl—/ BTt
i—00 k—oo B(z,r) " B(z,r)

in distribution sense. Since B is continuous, we get Lemma 4.1. O

We easily get that ABT < 0, i.e., for any nonnegative C§°-function
h and any é > 0,

/ hABt = / ARB* = lim A hBf = lim | hABY
D

i—00 i—00 D
k3

= lim / + / RO By
1—00 D;—R;(6) D;NR;(6)
<

T(8) + 113?0 T(dle;) = 7(6),

since g* — g in L1P or C®*-norm so the coefficients of Laplacian oper-
ator for harmonic coordinates converges in C*-norm [1]. Then by the
same argument as (4.4), we get the above inequality. Also we know
that A; B} — ABY in distribution sense by the above argument.

By the same argument as [3, 9], we get A(B* + B™) = 0. From
AB*, AB~ <0, we obtain AB' = 0 so BT is harmonic.

In [3] from AB* = 0 we get that Hess(B*) = 0 and VB™ is a paral-
lel vector field. It is also an important step to show that Hess(B1) = 0
in our case. We will follow Cai’s proof. Define b; by the following
Dirichlet problem;

Db, =0
bilop = BY.
Then we can prove Lemma 3.1 in [2].

LEMMA 4.2. |V.;b;|? converges, in the strong L'3-topology (for 1 <
g <p), to |[VBT].

Proof. The only difference of proof occurs when we apply the Bochner-
Weitzenbock formula. But we only need the integration of A;|V;b;|?
so there are no obstruction to prove this lemma. ||



Manifolds with nonnegative Ricci curvature almost everywhere 137

From this lemma, we get Hess(B*) = 0 in L? and can prove the
remainder of the proof by the same argument as [2].

Now we obtain that there exists an € > 0 depending only on n, k, %9, d
such that if Ricpsr > 0 on M — A where vol(A) < e then M is diffeo-
morphic to 7% x N up to finite cover, where N is a compact simply
connected space. But the complete proof of Theorem 1.1 is the same
as the above argument.

[10]
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