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LINEAR STABILITY OF A PERIODIC
ORBIT OF TWO-BALL LINEAR SYSTEMS

DonG Pyo CHI AND SUNBOK SEO

ABSTRACT. We introduce a Hamiltonian system which consists of
two balls in the vertical line colliding elastically with each other and
the floor. Wojtkowski proved that for the system of two linear balls
with a linear potential (with gravity), there is a periodic orbit which
becomes linearly stable if m; < ma where m; is the mass of a lower
particle and my is that of an upper particle.

For our system having a quadratic potential, we find an appropri-
ate coordinate to obtain symplectic collision maps, obtain a periodic
orbit and prove conclusively that the periodic orbit is linearly stable
without the mass condition.

1. Introduction

Hamiltonian systems with many degrees of freedom are likely to ex-
hibit strong mixing behavior produced by exponential divergence of
nearby orbits. Although strict integrability is easily destroyed by pertur-
bations, the KAM theory guarantees its survival on some exotic subsets.
This interplay of integrability and nonintegrability is still a great chal-
lenge for the theory. We will consider the linear stability of a periodic
orbit in a specific Hamiltonian system.

Our system consists of some particles in the half line colliding elasti-
cally with each other and the floor (see Figure 1).

Wojtkowski (Wojtkowski [3]) has introduced a Hamiltonian system
with arbitrary number of degrees of freedom for which he can establish
the nonvanishment of at least one Lyapunov exponent almost every-
where. It is a system of n particles in a line which fall down with a
constant acceleration toward a hard floor. In that paper (Wojtkowski
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FIGURE 1. A Hamiltonian system

[3]), it is proved that for the system of two linear balls with a linear
potential (with gravity), there is a periodic orbit which becomes linearly
stable if m; < my where m, is the mass of a lower particle and m; is
that of an upper particle.

In this paper, we introduce a Hamiltonian system which is a system of
two particles in a line such that all the particles are connected to the floor
with the springs having same spring constant. The particles are all under
the influence of an external potential fields with same potential. We find
an appropriate coordinate to obtain symplectic collision maps, obtain a
periodic orbit and prove conclusively that the periodic orbit is linearly
stable (without the mass condition) in our systems. Although general
scheme of the proof is very similar to Wojtkowski (Wojtkowski [3]), there
are many difference in details and technicality because potential in our
system is what Wojtkowski left.

In Section 2 we describe our systems. In Section 3 we introduce
a useful coordinate and obtain formulas for the derivatives of collision
maps for our system. In Section 4 we prove the existence of a periodic
orbit in our system and its linear stability.

2. Description of the system

Let us consider two point masses my, mo on a vertical line. We will
refer to them as particles. We denote by q;,gs the positions of the
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particles and by vy, vs their velocities. The particles are all under the
influence of an external potential field with a potential V(g) = 923 They
collide elastically with each other and with the rigid floor ¢ = 0. Hence
the dynamics between collisions is described by the Hamiltonian

where p; = m;v; (1 = 1,2) are the momenta. At a collision of the 1°¢ and
the 2™ particles there is an instantaneous change of their velocities;

vy = mavy + (1 —m2)vg,

vy = (1 + 72)v; — Y1205

1)

m; —m

where 7y = 2, the — sign in the superscripts refers to velocities

1 2
before the collision and + sign in the superscripts to velocities after the
collision.

At the collision of the 1%t particle with the floor, we have

(2) vf = -y

If the particles have equal masses our system is completely integrable.
Our system is a Hamiltonian flow with collisions as defined in (Wo-
jtkowski [3]) (Section 1). Indeed we consider the Hamiltonian system
. Di
g =—,
3) o
pi = —q, 1= 1,2

We let ¢* : N — N be the flow defined by the formulas (3) on the
submanifold

N = {(q,p) € R’ x R’|H(g,p) = %}

and ¢* preserves the Liouville measure v. Further we let M C N,

M = {(q,p) € N0 < ¢ < go}.

The boundary dM of M is piecewise smooth and on an open subset
OM,, regular part of the boundary, C M the boundary is smooth and
the flow ¢’ is transversal to it which is defined below. The regular
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part dM, of the boundary of M is the union of two submanifolds, i.e.,
OM, = OMy U OM, where

OMy = {(g,p) € N[0 = g1 < g2,v1 # 0},
oM, = {(g,p) € N|0 < q1 = g2,v1 — v2 # 0}.
Furthermore we have dM* = OM; U OM;" where
OM§ = {(q,p) € dMo| + v > 0},
OM;® = {(g,p) € OMy| + (v — v) < O}

The singular part M, = OM\OM, of the boundary of M is a finite
union of submanifolds of N of codimension at least two, so the orbits
of the flow ¢' which pass through dM; form a set of Liouville measure
zero.

The flow ¢! enters M in M and leaves it in M ~. The collision rules
(1) and (2) define the collision map ® : IM~ — OM™*. The collision
map is symplectic with respect to the canonical symplectic structure on
OM,. Indeed in the both cases of the collision with the floor and the
collision between two particles, @ is the restriction of a symplectic linear
map of the ambient space R? x R?. That is we have

‘I’laM; =5 laM;

1=0,1and S; = (g 1%) with R = <1 Z—lf)’ \ 1 —7’1)[212> where v;p =
2 -

M. Then S, commutes with the flow, i.e., Ho S; = H. And we

my +me

have Sp = (’8 ;)) where I; = diag(~1,1) is the diagonal matrix but
1

So does not commute with the flow.
In this setup we introduce the Hamiltonian flow with collisions ¢! :
MUdOM*Y - MUJOM™ defined by

¥'(z) = ¢'(2)
for 0 < t < 7(x) where 7(z) is the first return time when ¢* reaches
OM~ and
Y = 3)()
The flow ! preserves the Liouville measure v and is differentiable almost

everywhere in M. The collision map is not defined at multiple collisions
where more than two ¢’s assume the same value. Multiple collisions
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belong to the singular part of the boundary. It is useful to consider the
quotients of the operators Dy by the one dimensional subspace spanned
by the velocity vector of the flow. We will denote this quotient by L.
We can describe Lt : T; — Tyt in the following way where 7y, y € N is
the quotient of T,N by the 1-dimensional subspace of T, N spanned by
Hamiltonian vector field.

Let ¥%z be well defined for 0 < u < t and suppose that 7(z) <
t < 7(¢"z), i.e., x has only one collision time 7(z) in the time interval
[0,%]. If we choose representations of 7,, y € M as subspaces of T, M
transversal to the flow (3) we can write

(4) Lt =7 0 Dyrz¢"™" 0 Dygr;® 0 g 0 D¢ |7,
where
7o TyraN — Tyro(OM )
and
m T,/,tIM — 7:/)‘33
are the linear projections along the flow (see Figure 2).

To
Dy ®
r(OM™) Tyr(OMT)
™

FIGURE 2. The quotient linear operator Lf : T, — Tyt

Dg¢” Dyrz¢*™"

b
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Note that the formula (4) makes perfect sense also for the collision
time t = 7(z), i.e., L3 is well defined. Clearly then for v almost all
z € MUOM}, Lt is well defined for all ¢t € R. Let us further assume
that all z € M (v almost all) are bound to leave M under ¢*. We define
then a map ¥ : M;* — OM; by Uz = ®¢"®)z where 7(z) is the first
collision time of z. ¥ is a piecewise differentiable map. We will call ¥
the standard section map of the flow {1*}. The derivative D;¥ of ¥ at
z € OM is equal to L;®) under the natural identification of T, with
T.(0M).

3. Collision maps

We introduce as coordinates the energies of individual particles and
proper angles:

1 1
h;, = —miv? + §q,?,

2
m;v;
b

0; = /m; arctan .
i

Then we have linear symplectic coordinates in the tangent spaces to the
phase space R? x R? by the formulas

1=1,2.

5hi — %5%‘ + qi(Sq,- = m,"U,;(S’U,' + q-iéqb
i

g Di mig; m;v;

66; = 2—h,~6pi - 2—m g = %h, v; — 7’;

where (dq, 0p) are natural linear symplectic coordinates in R? x R?. In

these coordinates, we obtain w = 6¢ A dp = dh A 60 and the velocity
vector field of the flow is (0, —1), i.e., Sh =0, 60 = —1.

Hence the flow ¢! for the velocity vector fields (0,—1) acts on the
linear manifold N = {h; + hp = 3} by translations and its derivative
D¢t is the identity operator. Our goal is to describe the derivative of
the standard section map ¥ which is the map from a collision to the
next collision. As it was explained in Section 2, DV coincides with the
quotient of Dy by the velocity vector fields (0, —1) if we identify the
quotient of the tangent space to M by the flow with the tangent space
to OM;*.

We form coordinates in the quotient (by the velocity vector field) of
the tangent space to M by choosing a codimension one subspace 7 in

(Sqi, 1= 1,2
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the tangent space to M,
T= {((5’2,(50) € R2 X R2 | (Shl +5h2 = 0,m1501 + m2602 = 0}

M being an open subset in the linear manifold IV allows for identification
of all its tangent spaces.

The part of the collision manifold corresponding to the collision of
the 1°* and the 2™ particles is

1 1
8M12 = {(h,'U) eEN | h1 - imlvf = hy — 'émQ’U%}.

The collision map @y, : IM; — M}, describing the collision of the 1%
and the 2™ particles in the (h, v) coordinates is given by

®15(h™,v7) = (h*,v") for (h™,v”) € My, (ht,v™) € OM;,;

where
hf =h; - A,
hf =hy + A,
oF 07 v 0;
5 t L — oyt 1- t 2
(5) an\/ﬁ Y12 an\/_ ( ’712)\/7T an \/"72,
+ \/——‘ -
t 2 1 — Yot 2
an\/n_l2 (1472 )\/7T n\/fr_n_1 T2 tan —
) - _
where A=—————mlm2 (v — vz,“)————mlv1 + Mavy and v = m2
my + mo 1+ m

m
The equalities for the angle—coordih;_te i?l Egs. (5) are obtamed by Egs.
(1). We assume here that the 1% particle is below the 2™ particle.
Differentiation Egs. (5), we obtain D®, : (6h~,807) — (Sh',80%)
given by

Shi = (1 — a)Shy — béhy — 807 — dsb;,
Shi = adhy + (1 + b)dhy + cd6 + dob;,

hT h
(6) 807 = 712#59; +(1+ 712)h—2+50,;,
hT hy o._
005 = (1 - ’le) hT 73007 — 275 Rt 59
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where
a 2mymy (mlvl‘2 + (mg —m )vl_vQ )
- (ml + m2)2 h,; 2 ! 2h1_ ’
2
2myms ( MoV, U] Uy
- +{(mg —m ),
(my + m,)? hy (mz —m1) 2h;
2mym v, q
c= (ml _:mz )2 (2'01 Q1+ (m2 - ml) :nll);
2mymg ( U Q1
2 -m) )
(M + my)? vy @1 + (Mg —my) o

LEMMA 3.1. When the 1% and the 2™ particles collide, we have the
linear operator DW¥, : T — T defined by DV y5(6hy,6h;, 605 ,805) =
(8h{, 8hy , 867,803 );

U U
—a—-—— -b+ = -K
(1 a B + A K \
U U
— 14+b6— — -K K
a-+ hT + h;
DV, =
m2V _m2V m2W+m1 —m2W+m2
hT hy my + My my + my
_le _le —mW4+m; mW+m,
\ hl_ h'2_ ms + me m, + me )
where
v alerd g wervid
2(vy — Uqy ) Uy — Y
hy h, hy hy
A= ’leﬁ, B=(1+ 712)h—§*-’ C=(1- ’)’12)é, D = 712h—2;,
v a(D+B-C+ A) W:v;(C’—A)—vl_(D-i—B).

2(vy — vy )(my +my)’ (vr —vy)
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Proof. We will construct D¥, like this,
DUy : T 2o, T(hya)aMl_z l&? T(h,g)aMl'; T
(6h™,6607) — (6h™,867 + A) (6h*,867) — (6_h+,6_0+) = (6T, 80" + o)

where 7y and 7, are linear projections along the flow of our system.

Given (6h™,867) € T, ie., 6hi + 6hy = 0, mi06; + m2660; = 0, we
project the vector into the tangent space T(x,0)(0M;;) along the velocity
vector of the flow (0,0, —1,—1). Since

Tin0)(OMG) = {(6h%, 66%)|6hT + 8hy = 0,

L_ShE — vEsF — 2hi + v66F = 0},

2hi
we have (6h~,8607) — (0h™, 00~ + /\) where
aQ
ano 07 + \) — —— =
2 vy (607 + A) 2h1 +v (607 +A) =0

or

1 qQ _
A= vy 005 — 867
vy — Uy <2h2 b2 2h U )

Then we apply the derivative D®,, of the collision map given by Eqgs.
(6). Let (8h+,68%) € T(n 5 (OM55), then it follows that

6k = (1 — a)8hy — bdhy — c(867 + N) — d(86; + ),
§hF = adhT + (1 + b)Shy + c(867 + A) +d(563 + A),

hi hy
591" = 712#;(50; + )+ 1+ 712)%2.{?(602— + ),
1 1

hy hy
865 = (1= 1) 2 (067 +2) = ma (065 + ).
2 2

Finally we apply the projection onto 7 along the velocity vector (0,0,
-1,-1), i.e,

(6h™,867) > (5K, 60" + o) = (3h*,667)
or

M 607 + madB; = my (601 + o) + ma(602 + 0) = M1 867 + madb; .
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Hence
my — m171272L+ —mq(l - 712)#;
o = 1 21667
my + Mo
hy 2
mg — my(1+ '712)h—+ + m2’712h—+
+ 1 L
2
m; + mo
hT hy hy hy
m1(712h—1+ +(1+ ’712)h—24;) + mg((1 - 712)#? - ’leh—i)
-\ 1 1 2 2
my + mo
which immediately yields the result. a

This operator D¥;, has a useful extension DSi5 from 7 to R? x R2.

LEMMA 3.2. DV, : T — T has a symplectic extension DS, :
R? x R? — R? x R?, that is, the restriction of DS;5 to T coincides with
the operator DV, in particular, DSy, (T)=T.

Furthermore, the quotient of DSi» by the invariant subspace T is the
identity operator on the quotient space.

DSyy : (6h5, 6k, 807, 805) — (Oh, ,8hy , 60+ , 60, ) is given by

U U
l—a-Ztf b+t f K k)
hy h;
U U
—— 1+b6—-—— ~-K K
a+hl_ fi + Iy h
DSy, =
m2V+£ _m2V+_f_2 maW +my —maW +mgo
hT my hy my my + Mo my + mgy
_mlv_ﬁ _le_ﬁ —miW+m; mW +my

\ hT Mo hy Mo my + mg mi + msy )
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where
f—sz(a_b—l)-l- U (_n_zl_@)
1T m; + mqg my +mg \ h] hy
1 1 WU mya + mob + my
—+ - \{K ,
+m2(h1+h2)< V+m1+m2)+ my + mg
_ Vmyma(hy my — hTms)
fa=—

hT hs (my + my)
Proof. We consider the following setting;
Ghy = (1 ~a- —U:> Shi + (—b+ E_) shy + K867 — K865
+ fi(6hT + 6h3) + 91(my 80 + m2d6y;),
3h, = <a+ %) Sh + (1 +b~ hg_) Shy + —Ko07 + K86
1 2
— fi(6hT + 6h3) — g1(m1 607 + m2d63 ),

=~ + sz _ m2V _ m2W +my .. —m2W +mo .. _
00, = —0dh] — —dh; + ——— 0] + ————— 40
61 h; hl h2— 2 t my + Mgy t + m) + ma 2
fo oo sy 9 - _
+ oo (OhT + 8h7) + % (ma 867 +msdty),
~~ - W
so7 = - gy MY gy W gy W E g
hi h; my + me my + my
f

~ (8T + 6hz) - %(mléﬁf + ma865).
This setting yields that DS;5(7) = T and DS;» preserves the linear
functionals 6H = 6h; + 6hy and 6® = m, 80, + mqd6,. We see that
DSis = DSya|7 + DSy2/T where DS;o/T : R2 x R2/T — R2 x R?/T.
Note that DS;»/T (the quotient of DS)2 by 7') is the identity operator.
Indeed the linear functionals 6 H and 69 can be used as coordinates in
the quotient space R? x R? /7.

It is well-known that when the matrix ¥= g g) where A, B, C,
and D are real n X n matrices, the matrix ¥ is symplectic if and only if
DT —BT)

its inverse is of the form ¥~!= (__CT AT
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Using this fact for the symplecticity, we obtain g; = g, = 0 and fi and
f> are defined as above. O

We will consider now the collision of a particle with the floor. The
part of the collision manifold corresponding to the collision of the 1°
particle with the floor is

OMZE = {(h,o) eN| 6F =iV"2“”}.

The collision map ®o; : §Mg; - Mg, is given by ®g; (h~,07) = (b, 87%)
where

0f = —0;
We find that D&, given by (5h~,607) — (6ht,80%) change the §6;-
coordinate only and

Tino)(0Mg7) = {(6h%,660%)|0hE + 6hF =0, 66% = 0).
Hence we see that D®,; is equal to the identity operator.

LEMMA 3.3. When the 1%* particle collides with the floor, the deriv-
ative of the standard section map DV, is equal to the restriction to T
of the linear operator (6h~,60) — (6h™,80") given by

Shy =68hg, 607 =667 forallk=1,2.
Proof. We will construct Dy, like this,
DWo; : T 2% Ty 0)0My; 228 Ty 00M; = T
(6h™,867) > (8h™,807 + X) — (6h™,56%) s (6h*,807) = (6h*,66% + o)
where 7y and 7, are linear projections along the flow of our system.

Given (0h~,807) € T, we project the vector into the tangent space
Tin,6)(0Mp;) along the velocity vector of the flow (0,0, —1, —1). Since

Ting)(OMg;) = {(6h*, 66%)|6hi + 6k =0, 68% =0},

we have (8hy, 6hy, 607,605 ) = (8hT, 6hy,667,356;) + A(0,0,1,1) where
A= —467.
Then we apply the identity map D&y, ie., (3hf,dh7, 867, 60F) =
(8hy,6hg, 067 — 867,607 — 667). Finally we apply the projection onto
T along the velocity vector (0,0,—1,-1), i.e.,

(6h{,8hy, 807,807 ) = (6h, 6,667, 865) + 0(0,0,1,1)

= (6hy,0h3, 0,805 — 867 + o)
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where
m1807 + madby = myo +ma(80; — 867 + o) =m0y + madby
or o = 80; and then this completes the proof. O

We will simplify DS, by the following symplectic change of coordi-
nates

{g = P7'h for € = (&,£1)
n= P80 forn=(no,m)

where P* and P! are given by

1 1
my My my+my My +my
P* = and P l=
-1 1 _ mo my

my +me M1+ My

In (&,7) coordinates, we have T={£ = 0,70 = 0} so that 7 acquires the
structure of the standard symplectic space R x R . These coordinates
allow the expression of the derivatives DSy in a fairly simple form.
Expressing DS), in the coordinates (§,7) we obtain

= Pt 0 P 0
DS]Z = ( 0 P*) DSl2 (O P*—l)
or _
DS,

(1 0 0 0 \

v, C12 + vy d
0 1+bi2— a2+ (crz+dig)w 0 22T
Uy — Uy
0 0 1 0

vy (Crg — A12) — vy (D12 + Bi2)
vy — Uy

\0 (Cia — A1z — Brz — Dy)w 0

(ki +hy)
2hi hy (v — o7)

where w =
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4. The existence of a periodic orbit and its linear stability

THEOREM 4.1. There is a periodic orbit in the system with potential
i
5

Proof. We prefer to have a periodic orbit with a small period, so it
is reasonable to require that total energies h; of individual particles do
not change in collisions. From the formula (1) we see that this is the
case if the centre of mass of colliding particles is at rest, i.e., the sum of
their momenta is zero. In such a case a collision results in reversing the
momenta, i.e., pf = —p;.

We will obtain the periodic orbit having the following behaviour (see
Figure 3).

S ///. 4 i
t=20 t= to t= 2t0

FIGURE 3. A periodic orbit when two particles are under
the influence of an external potential field

By the Hamiltonian equation, for 0 < ¢ < 7 (7 is a first collision time)

t
we get §(t) + a(t) = 0 or equivalently we have

q(t) =7:(0) cos (@t) + v/mv*(0) sin (\/gt) ,
v (t) = —\/gq(O) sin (\/gt> + v7(0) cos (\/gt) .

We take initial conditions (g;(0), ¢2(0), v1(0), v2(0)) at ¢ = 0 which de-
scribe the collision between the first and the second particle with their
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centers of mass at rest, i.e.,
q1(0) = ¢2(0), myv; (0) + mevy (0) = 0.

Furthermore, at time ¢t = t, we want the first particle to hit the floor
and the second particle to slow down to zero velocity.
Hence we obtain

at0) = 00 cos (1 t0) = v @ sin (=u) =0
alte) = 0 cos (1 -t0) - rv2<)sin(\/m32to)

1
v to q1 sm

Here t; must satisfy tan <\/T to) tan <\/m:2t0) = \/Z:g since
vy (0) = \/7q1 (0) cot (\/mTltO)
@ vy (0) = —\/mzqu (0) tan (\/:ni:to)

myvy (0) + mauz (0) = 0.

Also we have g3(¢y) > 0 and v; (tp) < 0 since v; (0) > 0 and v; (0) < 0.
The initial conditions (g(0),v~(0)) obtained in such a way lead to a
periodic orbit of period 2ty. Indeed we get

2t0) =~y i sin ([ 20) = a0),

2s) = ) cos {1/ -t ) = (0,
vT(2ty) = —T (t) cos ( —1—t0) — v7(0),
07 2t0) = = aalt)sin (| o) = 050)
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since vy (to) = —v; (to) and Egs. (7). 0

DEFINITION 4.2. (Howard and Makay [2]) A periodic orbit is said to
be linearly stable if, given € > 0, there is a §(¢) > 0 such that all orbits
of the tangent map initially within é of 0 remain within ¢ of 0 for all
forward time.

REMARK 4.3. A periodic orbit is linearly stable iff all eigenvalues of
the tangent map have modulus less than or equal to 1 and all Jordan
blocks corresponding to eigenvalues on the unit circle are one dimen-
sional.

LEMMA 4.4. (Arnold [1]) Let A be the matrix of a linear mapping of
the plane to itself which preserves area (det A = 1). Then the mapping
A is stable if | tr A| < 2.

THEOREM 4.5. The periodic orbit which is obtained is linearly stable.

Proof. 1ts linear stability is described by the matrix
vy c+ vy d

1+b—a+(c+dw —
Uy — U

DSy, =
v, (C — A) — v (D + B)
v — Uy

(C-—A-B-Dw

where w,a,b,c,d, A, B,C and D are defined as before, v; = —n:%—vl-.

. M2
By Lemma 4.4, the matrix is stable if and only if —2 < tr(DS)3) < 2.
By a direct computation, we have

tr(DS12) — 2 = — Ama(mivf + mimavt + 2mag})” <0
(m1 +ma)2(miv] + gima) (mavf +¢f)

4¢3 (my — my)?(m2v? + mymav? + mag?)
(m1 + my)?2(m2v? + mag?)(miv? + ¢3)
This completes the proof. O

tr(DSy) +2 = > 0.
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