Abstract
Let {Rn($\chi$)}{{{{ { } atop {n=0} }}}} be a discrete Sobolev orthogonal polynomials (DSOPS) relative to a symmetric bilinear form (p,q)={{{{ INT _{ } }}}} pqd$\mu$0 +{{{{ INT _{ } }}}} p qd$\mu$1, where d$\mu$0 and d$\mu$1 are signed Borel measures on . We find necessary and sufficient conditions for {Rn($\chi$)}{{{{ { } atop {n=0} }}}} to satisfy a second order difference equation 2($\chi$) y($\chi$)+ 1($\chi$) y($\chi$)= ny($\chi$) and classify all such {Rn($\chi$)}{{{{ { } atop {n=0} }}}}. Here, and are forward and backward difference operators defined by f($\chi$) = f($\chi$+1) - f($\chi$) and f($\chi$) = f($\chi$) - f($\chi$-1).