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ON LI-IDEALS AND PRIME LI-IDEALS
OF LATTICE IMPLICATION ALGEBRAS

YouNnG BAE JUN

ABSTRACT. As a continuation of the paper [3], in this paper we
investigate the further properties on LI-ideals, and show that how to
generate an LJ-ideal by both an LI-ideal and an element. We define
a prime LI-ideal, and give an equivalent condition for a proper LI-
ideal to be prime. Using this result, we establish the extension
property and prime Ll-ideal theorem.

1. Introduction

In order to research the logical system whose propositional value is
given in a lattice, Y. Xu [6] proposed the concept of lattice implication
algebras, and discussed their some properties. Also, in (7], Y. Xu and
K. Y. Qin discussed the properties of lattice H implication algebras, and
gave some equivalent conditions about lattice H implication algebras.
Y. Xu and K. Y. Qin [8] introduced the notion of filters in a lattice
implication algebra, and investigated their properties. ‘In [38], Y. B.
Jun et al. defined an Ll-ideal of a lattice implication algebra and
showed that every LI-ideal is a lattice ideal. They gave an example
that a lattice ideal may not be an LI-ideal, and showed that every
lattice ideal is an LI-ideal in a lattice H implication algebra. They
discussed the relationship between fillers and LI-ideals, and studied
how to generate an LI-ideal by a set. Moreover they constructed the
quotient structure by using an LI-ideal, and studied the properties of
LI-ideals related to implication homomorphisms. ,

This paper is a continuation of the paper [3]. In this paper we
investigate the further properties on LI-ideals, and show that how to
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generate an LI-ideal by both an LI-ideal and an element. We define a
prime LI-ideal, and give an equivalent condition for a proper LI-ideal
to be prime. Using this result, we establish the extension property and
prime LI-ideal theorem.

2. Preliminaries

By a lattice implication algebra we mean a bounded lattice (L, V, A,
0, 1) with order-reversing involution “/” and a binary operation “—”
satisfying the following axioms:

(1) 2 (y - 2) =y — (& — 2),

12) z—z=1,

) z—oy=y -,
(I4) z—y=y—z=1=>z=y,
1B) -y —»y=(@y—2) -z,

(L) (zVy) = z=(z— 2) A (y— 2),

I2) (zAy) - z=(x—2)V(y— 2),
for all z,y,z € L.

Note that the conditions (L1) and (L2) are equivalent to the condi-
tions

L3) z—>(yAnz)=(xz—>y)A(z — 2), and

(L4) z - (yV 2) = (z — y) V (x — 2), respectively.

A lattice implication algebra L is called a lattice H implication al-
gebra if it satisfles cVyV ((zAy) — 2) =1 for all z,y,2 € L.

In the sequel the binary operation “ — ” will be denoted by juxtapo-
sition. We can define a partial ordering “ < ” on a lattice implication
algebra L by z <y if and only if zy = 1.

In a lattice implication algebra L, the following hold (see [6]):

(1) 0z=1,lz=z and z1 = 1.
(2) =’ = 0.
(3) zy < (y2)(z2).
(4) zVy=(zy)y.
(8) ((yz)y') =z Ay = ((zy)z').
(6) z < y implies yz < zz and 2z < zy.
(7) = < (zy)y.
In a lattice H implication algebra L, the following hold (see [7]):
(8) z(zy) = zy.
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(9) 2(yz) = (zy)(x2).

3. LI-ideals

We begin with the following proposition.

PRrOPOSITION 3.1. In a lattice implication algebra the following
identity holds:

(10) ((zy)y)y = zy.

Proof. The inequality zy < ((zy)y)y follows from (7). Now usin;
(3), (11) and (12), we have '

(((zn)y)y)(zy) 2 z((zy)y) = (zy)(zy) =1

and hence (((zy)y)y)(zy) = 1, i.e., ((zy)y)y < zy. This completes the
proof. O

DEFINITION 3.2. (Y. B. Junet al. [3]) Let L be a lattice implication
algebra. An LI-ideal A of L is a non-empty subset of L such that
(LI1) 0 A, :
(L12) (zy) € Aand y € Aimply z € A,
for all z,y € L.

Under this definition {0} and L are the trivial examples of LI-ideals.
The following example shows that there is a proper LI-ideal in a lattice
implication algebra.

ExampLE 3.3. (Y. B. Jun et al. [3, Example 2.1]) Let L := {0, q,
b, ¢, d, 1} be a set with Figure 1 as a partial ordering. Define a unary
operation “’ ” and a binary operation denoted by juxtaposition on L
as follows (Tables 1 and 2, respectively):



Figure 1 Table 1 Table 2

Define V- and A-operations on L as follows:

zVy:=(zy)y,
z Ay = (('y)y),

for all z,y € L. Then L is a lattice implication algebra. It is easy to
check that A := {0, c} is an LI-ideal of L.

DEFINITION 3.4. (S. Burris et al. [1, Definition 8.2]) Let L be a
lattice. An ideal I of L is a non-empty subset of L such that

(LI3) z€I,y€ L and y < z imply that y € I,

(LI4) z,y € I implies zVy € I.
Throughout this paper we call this a lattice ideal.

Note that in a lattice H implication algebra, an LI-ideal and a lattice
ideal coincide (see (3, Theorems 2.4 and 2.6]), also observe that a non-
empty subset A of a lattice H implication algebra L is an LI-ideal of
L if and only if for every z,y € L,

(LI5) z,yc A zVye A

PROPOSITION 3.5. Let L be a lattice H implication algebra and
a € L. Then there is no proper LI-ideal of L containing a and o
simultaneously.

Proof. Let A be a proper LI-ideal of L containing a and &' simul-
taneously. Then 1 =aV a’ € A, and hence A = L a contradiction. O
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For any subsets A and B of a lattice H implication algebra L we set
AANB={aNblac A a.nd b€ B}.

PROPOSITION 3.6. If A and B are LI-ideals of a Iattnce H implica-
tion algebra L, then so is AN\ B.

Proof. Let z,y € AANB. Thenz =a; Aby and y = ag /\bz for some
ai,az € A and by, b € B. Since A is an Ll-ideal, it follows from (L15)
that a; V a2 € A. Now y

zVy= (a1 Ab)V(ag Abg) = ((a1 A b1) Vag) A({aa ‘/\ b1) ng).

Noticing that (a1 Aby) Vag = (a1 Vag) A (b1 Vag) < 41; \/’ag, we have
(a1 Ab1)Vag € A by (LI3). Similarly we know that (a3 A bﬁ Vby € B.
Hence

:L‘Vy-‘-‘-((dl /\byl)vaz)/\((alr’\bl)Vbz)GA:AE;;

Conversely assume that zVy € AABforallz,y € L. Thxen xVy =aAb
for some a € A and b € B. Observe that

a:=:cA(xVy)=scA(a/\b)§a

so from (LI3) that x € A. Similarly, one can show that * € B and that
y € Aandy € B. Thus z,y € AA B, ending the proof. S 0

PROPOSITION 3.7. If A and B are LI-ideals of a lattice H xmplzca-
tion algebra L, then ANB = AN B.

Proof. Let x € AANB. Thenz =aAbforsomeac Aand bec B.
Observe that £ = a A b < a (also b). It follows from (LI3) that z € A
(also B) and hence £ € ANB. Conversely if x € ANBthenz = zAz €
AN B. Therefore ANB=ANB. 0

PROPOSITION 3.8. If A is an LI-ideal of a lattice H implication
algebra L and a € L, then the set K := {z € L|z'a € A} is an LI-ideal
of L.
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Proof. Let z,y € K. Then z’a € A and y'a € A. It follows from
(L2) that (zVy)a= (2’ Ay )a= (za) V (y'a) € Asothat zVy € K.
Conversely let z,y € L be such that zVy € K. Then (zV y)'a € A.
Using (13), (4) and (9), we have

(@Vy)a=d(@Vy)=d((zy)y) = (d(zy))(a'y)
= ((a'z)(a'y))(a’y) = (a'z) V (a'y) = (¢'a) V (/).
Thus (z'a) V (y'a) € A which implies that ’a € A and y’a € A because

A is an Ll-ideal. This means that z € K and y € K, completing the
proof. O

For any natural number n we define n(z)y recursively as follows:
L(z)y = zy and (n + 1)(z)y = z(n(z)y).

Using (I1) repeatedly, we know that in a lattice implication algebra
the following identity holds:

(11) 2(y1(w2(-- - (Wn) - +-))) = y1(y2(- -+ (yn(22)) - --))-
As a special case of (11) we have

(12) 2(n(y)z) = n(y)(2z).
PROPOSITION 3.9. For any elements a,x,y1,Y2, - ,yn of a lattice
implication algebra L we have

(13) v1(v2(- - (yn(za)) --+)) = (1 (¥2(- - - (yn(za)) - --)))a)a.
Proof. The inequality

y1(82(- - (wn(za)) ---)) < (W1 (y2(- -+ (yn(za)) - -)))a)a
follows from (7). Using (10), (11), (I1) and (12), we get

(((1(y2(- - - (wn(a)) - - )))a)a) (wr (2(- - - (yn(za))---)))
= y1(y2( -~ (W (@((((1(v2(- - (Wn(za)) -+ -)))a)a)a))) - --))
= y1(y2(- - (W (@((W2(v2( -~ (n(za)) ---)))a))) -+ -))

= (W1(v2(- -~ (yn(xa)) -+ ))) (1 (y2(- - - (yn(za)) - --)))
=1,

and hence ((11(va(-- (n(za)---))a)a < v1(va(- - (vn(za))- ).
This completes the proof. O
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OBSERVATION 3.10. (Y. B. Jun et al. [3, Observation 2.8]) Suppose
A is a non-emapty family of LI-ideals of a lattice Implxmtzon algebra
L. Then A= ﬂA is also an LI-ideal of L.

Let A be a subset of a lattice implication algebra L. Then the least
LI-ideal containing A is called the LI-idéal generated by A, written
(A). , ' f :
Noticing that L is clearly an LI-ideal containing A, in view of Obser-
vation 3.10, we know that the above definition (A) of 4 is well-defined.

The next statement gives a description of elements of {4).

PROPOSITION 3.11. (Y. B. Jun ¢t al. [3, Theorem 2.9]) If A is 2
non-empty subset of a lattice implication algebra L, then

(A) = {z € Llal,(...(a}7')...) = 1 for some aq, ...,an € A}.
The following corollary is immediate from Pljopositibn 3.11.

COROLLARY 3.12. For any element a of a lattice implication algebra
L, we have

= {z € L|n{a’)x’ = 1 for some n'aturgal number n}.
Note that in a lattice H implication algebra the identity z(zy) = zy
holds (see [7; Corollary 1]). Hence using Corollary 8.12 we obtain

COROLLARY 3.13. Let L be a lattice H 1mp11cat1on algebra and
a € L. Then

={z € Lld's’' =1} = {& € L|za = 1}.

LEMMA 3.14. (Y. B. Jun et al. [3, Theorem 2.2]) Let A be an LI-
ideal of a lattice implication algebra L and let z € A. Ify < x (or
equivalently ' < y'), theny € A for all y € L.

The following theorem describes how to generate an Lli-ideal by
both an LI-ideal and an element.

THEOREM 3.15. Let A be an LI-ideal of a lattice implication alge-
bra L and let a € L. Then

(Au{a}) = {z € L|(n(a’)2')" € A for some n € N}.
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Proof. Denote A, = {z € L|(n(a’)z’)’ € A for some n € N}. Clearly
0 € A,. Let (yz)) € A, and = € A,. Then there exist m,n € N
such that (n(a’)((yz)")’)’ € A and (m(a’)2’) € A. It follows that
(n(a’)(yz)) = u and (m(a’)z’)’ = v for some u,v € A, so that
v’ = n(a’)(yz) and v = m(a’)z’. Then

1 =v/(n(a)(yz)) = v'(n(a)(z'y)) = ¥/ (z'(n(a")y)) = &' (v (n(a')y/)),

i.e., ' <u/(n(a’)y’). Using (6) we have

v =m(a)z’

< m(a’)(w'(n(a’)y"))

= u/(m(a')(n(a")y))

=u'((m + n)(a')y),
which implies that v'(u'(((m+n)(a’)y’)’)’) = V(v (m+n)(a)y’)) = 1.
Since u,v € A, it follows from Proposition 3.11 that ((m +n)(a’)y’)’ €
(A) = A. Hence y € A, and A, is an LI-ideal of L. Note that
(n(a”)a’)) =1' =0 € Asothat a € A,. Let z € A. Since '’ < d'z’ =
((a’z’)"), it follows from Lemma 3.14 that (a’z’)’ € A, ie., z € A,.
Thus AU {a} C A,. Finally we should verify that A, is the least LI-

ideal containing A and a. Let B be any LlI-ideal containing A and a,
and let z € A;. Then (n(a’)z’)’ € A C B for some n € N, and hence

(((n - 1)(a)z") a)' = (a'((n — 1)(a")z"))’ = (n(a')z’)" € B.

Since a € B, it follows from (LI2) that ((n — 1)(a’)z’)’ € B. Repeating
this process, we obtain z = (2')’ € B. Therefore A, is the least LI-
ideal containing A and a, i.e.,, (AU {a}) = A,. This completes the
proof. O

LEMMA 3.16. (J. Liu et al. [4, Corollary 1]) Let L be a lattice
implication algebra and a,b,z € L. If n{a)z = 1 and m(b)z = 1 for
some m,n € N, then there exists k € N such that k(a V b)z = 1.

THEOREM 3.17. Let A be an LI-ideal of a lattice implication alge-
bra L. Then

(Au{a}) N(AU{b}) =(AU{anb})
for all a,b € L.
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Proof. Let z € (AU {a}) N (AU {b}). By Theorem 3.15, there
are m,n € N such that (n(a')z’) € A and (m(d)z’Y € A. Hence
(n(a’)x’)’ = u and (m(d)2') = v for some u,v € A It follows
that n(a’)e’ =o' and m(¥)z’ = ' so that 1 = v’(u’(n(a’}x’)) =
n{a’)(v'(v'z")) and 1 = v'(v/(m(b)z')) = m(b) (W' (w'z’)). Using Lemma
3.16, there exists £k € N such that k(o' V ¥)(v'(v'z)) = 1. Sinee
a VY = (aAb), we have

1= k(a' V¥)(@'('a") = k((a A b)) (w'2)) = o' (u' (B{a A b)’)»'ﬁ’))

Applying Proposition 3.11 we get (k((a Ab)Y)2') € (4) = A and hence
z € (AU {a A b}) by Theorem 3.15. Thus

(AU {a}) N(AU{b}) S (AU{and}).

Conversely if z € (AU {a A b}), then (n((a Ab))z’Y € A for some
n € N. Since a Ab < a,b, therefore d <(anb)y and ¥ £ (aAb).
Using (6) repeatedly, we get n((aA b))z’ < n(a’)z’ and nf(aAb))a’ <
n(¥')a’, which imply that (n{a’)z’)’ < (n((a Ab))z'Y and (n(b)z') <
(n{(a A b))z')’. Applying Lemma 3.14, we obtain (n(a)z') € A and
(n(t)z') € A, ie, z € (AU {a}) and ¢ € (AU {b}). Hence z &
(Au{a}) N (AU {b}) and s0 (AU {aAb}) € {AU{a})N{AU{a}). “FPhis
completes the proof. O

COROLLARY 3.18. Let A be an LI-ideal of a lattice implication

algebra L. For any ay,a3,--- ,an € L we have
N
(Au{a}) =(Au{a nag A+~ Aag)).
t=1
Proof. Straightforward by induction on n. ‘ 0

COROLLARY 3.19. Let A be an LI-ideal of a Iattzce implzcaﬁon
algebra L. fag ANag \--- Nan, € A for all ay,as,- -+ ,an € L, then

A {ah) =4

i=1

P%oof. Usihg’f Corollary 3.18, we have
N(AU{a)) = (AU{m Aaa A Ael) = (M) =4 - QO

i=1
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4. Prime LI-ideals

DEFINITION 4.1. A proper LI-ideal P of a lattice implication alge-

bra L is said to be prime if whenever tAy € Pthenz € Pory € P
for all z,y € L.

We provide an equivalent condition for a proper LI-ideal to be
prime.

THEOREM 4.2. Let P be a proper LI-ideal of a lattice implication
algebra L. Then P is prime if and only if (zy)’ € P or (yx)' € P for
allz,y e L.

Proof. Assume that P is a prime LI-ideal of L and let =,y € L.
Then

1=(zVy)zVy) =((zVy)z)V((zVy)y)
= (1A (y2) V ((zy) A1) = (yz) V (zy),

and so (yz)’' A (zy) = ((yz) V (zy))’ = 1’ = 0 € P. Since P is prime,
it follows that (zy)’ € P or (yz)’ € P. Conversely let P be a proper
LI-ideal of L and suppose (zy)’ € P or (yz)' € P for all z,y € L. Let
z,y € L be such that z Ay € P. If (yz)’ € P, since

(y(yz)) = ((y2)y') = (Y)WW) =@ V') =z Ay

we have y € P by (LI2). Similarly z € P whenever (zy)’ € P, ending
the proof. O

Using Theorem 4.2 we have the extension property for prime LI-
ideal. The proof is straightforward and is omitted.

THEOREM 4.3. (Extension property for prime LI-ideal) Let P be
a prime LI-ideal of a lattice implication algebra L. Then every proper
LI-ideal containing P is also prime.

THEOREM 4.4. (Prime LI-ideal theorem) Let A be an LI-ideal of a
lattice implication algebra L and S a A-closed subset of L (i.e., zAy € S
whenever x,y € S) such that ANS = (). Then there exists a prime
LI-ideal P of L such that AC P and PN S = .
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Proof. The existence of an LI-ideal P being the maximal element of
the family of all LI-ideals that contains A and have empty intersection
with S follows from an application of Zorn’s lemma. ‘We now show
that P is prime. Suppose P is not prime. Then there exist z,y € L\ P
such that z Ay € P. By means of the maximality of P, we know
that SN (P U {z}) # 0 and SN (P U {y}) # 0. Taking v and v in
Sn{PuU{z}) and SN (PU {y}), respectively, then u Av € S because
S is A-closed. Since u Av < u,v, it follows that u Av € (PU{z}) and
uAv € (PU{y}). Using Theorem 3.17, one can know that

uAv e (PU{z})N{(PU{y}) = {(PU{zAy}) =P

Hence u Av € ST P, which is a contradiction. Therefore P is prime,
ending the proof. O

COROLLARY 4.5. Let A be an LI-ideal of a lattice implication al-
gebra L. If z € L\ A, then there is a prime LI-ideal P of L such that
ACPandz ¢P.

Proof. Let 8 = {y € Llzy = 1}. I 1,52 € S, then zyy = 1
and zyp = 1. It follows that z(y1 A ye) = (zy1) A (zy2) = 1 so that
yiAyz € S, ie, S is A-closed. Let y € S. Then zy = 1 and hence
(zyy =1 =0 € A Since z ¢ A, we have y ¢ A by (LI2) Hence
AN S = . Using Theorem 4.4, there is a prime LI-ideal P of L such
that A C P and PNS = 0. Since = € 3, the identity PN S = @) implies
x ¢ P. This completes the proof. 0

THEOREM 4.6. For a lattice implication algebra L the following are
equivalent:
(i) LI-ideal {0} is prime.
(it) every proper LI-ideal of L is prime.
(i) (L, <) is a totally ordered set.

Proof. (i) = (ii) is by Theorem 4.3, and (ii) = (i) is obvious. As-
sume that (L, <) is a totally ordered set. Then zy =1 or yr =1, and
hence (zy) =1 =0€ {0} or (yz)) =1 =0 {0} forall z,y € L. It
follows from Theorem 4.2 that {0} is a prime LI-ideal of L. Conversely
if {0} is a prime LI-ideal of L, then (zy)’ € {0} or (yz)’ € {0} for all
z,y € L, that is, (zy)’ = 0 or (yz)) = 0; hence zy = lor yr = 1
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for all z,y € L. This shows that (L, <) is a totally ordered set. This
completes the proof. O
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