ON LI-IDEALS AND PRIME LI-IDEALS OF LATTICE IMPLICATION ALGEBRAS

Young BAE Jun

ABSTRACT. As a continuation of the paper [3], in this paper we investigate the further properties on LI-ideals, and show that how to generate an LI-ideal by both an LI-ideal and an element. We define a prime LI-ideal, and give an equivalent condition for a proper LI-ideal to be prime. Using this result, we establish the extension property and prime LI-ideal theorem.

1. Introduction

In order to research the logical system whose propositional value is given in a lattice, Y. Xu [6] proposed the concept of lattice implication algebras, and discussed their some properties. Also, in [7], Y. Xu and K. Y. Qin discussed the properties of lattice H implication algebras, and gave some equivalent conditions about lattice H implication algebras. Y. Xu and K. Y. Qin [8] introduced the notion of filters in a lattice implication algebra, and investigated their properties. In [3], Y. B. Jun et al. defined an LI-ideal of a lattice implication algebra and showed that every LI-ideal is a lattice ideal. They gave an example that a lattice ideal may not be an LI-ideal, and showed that every lattice ideal is an LI-ideal in a lattice H implication algebra. They discussed the relationship between filters and LI-ideals, and studied how to generate an LI-ideal by a set. Moreover they constructed the quotient structure by using an LI-ideal, and studied the properties of LI-ideals related to implication homomorphisms.

This paper is a continuation of the paper [3]. In this paper we investigate the further properties on LI-ideals, and show that how to

Received October 1, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 03G10, 06B10, 54E15.

Key words and phrases: lattice (H) implication algebra, LI-ideal, lattice ideal, prime LI-ideal.

generate an LI-ideal by both an LI-ideal and an element. We define a prime LI-ideal, and give an equivalent condition for a proper LI-ideal to be prime. Using this result, we establish the extension property and prime LI-ideal theorem.

2. Preliminaries

By a lattice implication algebra we mean a bounded lattice $(L, \vee, \wedge, 0, 1)$ with order-reversing involution "I" and a binary operation " \rightarrow " satisfying the following axioms:

(I1)
$$x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$$
,

- (I2) $x \rightarrow x = 1$,
- (I3) $x \rightarrow y = y' \rightarrow x'$,
- (I4) $x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y$,
- (I5) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$,
- (L1) $(x \lor y) \to z = (x \to z) \land (y \to z),$
- (L2) $(x \wedge y) \rightarrow z = (x \rightarrow z) \vee (y \rightarrow z)$,

for all $x, y, z \in L$.

Note that the conditions (L1) and (L2) are equivalent to the conditions

- (L3) $x \to (y \land z) = (x \to y) \land (x \to z)$, and
- (L4) $x \to (y \lor z) = (x \to y) \lor (x \to z)$, respectively.

A lattice implication algebra L is called a lattice H implication algebra if it satisfies $x \vee y \vee ((x \wedge y) \rightarrow z) = 1$ for all $x, y, z \in L$.

In the sequel the binary operation " \rightarrow " will be denoted by juxtaposition. We can define a partial ordering " \leq " on a lattice implication algebra L by $x \leq y$ if and only if xy = 1.

In a lattice implication algebra L, the following hold (see [6]):

- (1) 0x = 1, 1x = x and x1 = 1.
- (2) x' = x0.
- (3) $xy \leq (yz)(xz)$.
- $(4) x \vee y = (xy)y.$
- (5) $((yx)y')' = x \wedge y = ((xy)x')'$.
- (6) $x \le y$ implies $yz \le xz$ and $zx \le zy$.
- $(7) x \leq (xy)y.$

In a lattice H implication algebra L, the following hold (see [7]):

(8) x(xy) = xy.

$$(9) x(yz) = (xy)(xz).$$

3. LI-ideals

We begin with the following proposition.

PROPOSITION 3.1. In a lattice implication algebra the following identity holds:

$$(10) ((xy)y)y = xy.$$

Proof. The inequality $xy \leq ((xy)y)y$ follows from (7). Now using (3), (I1) and (I2), we have

$$(((xy)y)y)(xy) \ge x((xy)y) = (xy)(xy) = 1$$

and hence (((xy)y)y)(xy) = 1, i.e., $((xy)y)y \le xy$. This completes the proof.

DEFINITION 3.2. (Y. B. Jun et al. [3]) Let L be a lattice implication algebra. An LI-ideal A of L is a non-empty subset of L such that

(LI1)
$$0 \in A$$
,

(LI2)
$$(xy)' \in A$$
 and $y \in A$ imply $x \in A$, for all $x, y \in L$.

Under this definition $\{0\}$ and L are the trivial examples of LI-ideals. The following example shows that there is a proper LI-ideal in a lattice implication algebra.

EXAMPLE 3.3. (Y. B. Jun et al. [3, Example 2.1]) Let $L := \{0, a, b, c, d, 1\}$ be a set with Figure 1 as a partial ordering. Define a unary operation "'" and a binary operation denoted by juxtaposition on L as follows (Tables 1 and 2, respectively):

372

	0	a	b	c	d	1
0	1	1	1	1	1	1
a	c	1	b	c	b	1
b	d	a	1	b	a	1
c	a	a	1	1	a	1
d	b	1	1	b	1	1
1	0	a	b	c	d	1

Figure 1

Table 1

Table 2

Define \vee - and \wedge -operations on L as follows:

$$x \lor y := (xy)y,$$

$$x \land y := ((x'y')y')',$$

for all $x, y \in L$. Then L is a lattice implication algebra. It is easy to check that $A := \{0, c\}$ is an LI-ideal of L.

DEFINITION 3.4. (S. Burris et al. [1, Definition 8.2]) Let L be a lattice. An *ideal* I of L is a non-empty subset of L such that

(LI3) $x \in I$, $y \in L$ and $y \le x$ imply that $y \in I$,

(LI4) $x, y \in I$ implies $x \lor y \in I$.

Throughout this paper we call this a lattice ideal.

Note that in a lattice H implication algebra, an LI-ideal and a lattice ideal coincide (see [3, Theorems 2.4 and 2.6]), also observe that a non-empty subset A of a lattice H implication algebra L is an LI-ideal of L if and only if for every $x,y\in L$,

(LI5)
$$x, y \in A \Leftrightarrow x \lor y \in A$$
.

PROPOSITION 3.5. Let L be a lattice H implication algebra and $a \in L$. Then there is no proper LI-ideal of L containing a and a' simultaneously.

Proof. Let A be a proper LI-ideal of L containing a and a' simultaneously. Then $1 = a \vee a' \in A$, and hence A = L a contradiction. \square

For any subsets A and B of a lattice H implication algebra L we set

$$A \wedge B = \{a \wedge b | a \in A \text{ and } b \in B\}.$$

PROPOSITION 3.6. If A and B are LI-ideals of a lattice H implication algebra L, then so is $A \wedge B$.

Proof. Let $x, y \in A \wedge B$. Then $x = a_1 \wedge b_1$ and $y = a_2 \wedge b_2$ for some $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Since A is an LI-ideal, it follows from (LI5) that $a_1 \vee a_2 \in A$. Now

$$x \vee y = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) = ((a_1 \wedge b_1) \vee a_2) \wedge ((a_1 \wedge b_1) \vee b_2).$$

Noticing that $(a_1 \wedge b_1) \vee a_2 = (a_1 \vee a_2) \wedge (b_1 \vee a_2) \leq a_1 \vee a_2$, we have $(a_1 \wedge b_1) \vee a_2 \in A$ by (LI3). Similarly we know that $(a_1 \wedge b_1) \vee b_2 \in B$. Hence

$$x \vee y = ((a_1 \wedge b_1) \vee a_2) \wedge ((a_1 \wedge b_1) \vee b_2) \in A \wedge B_{a_1}$$

Conversely assume that $x \lor y \in A \land B$ for all $x, y \in L$. Then $x \lor y = a \land b$ for some $a \in A$ and $b \in B$. Observe that

$$x = x \land (x \lor y) = x \land (a \land b) \le a$$

so from (LI3) that $x \in A$. Similarly, one can show that $x \in B$ and that $y \in A$ and $y \in B$. Thus $x, y \in A \land B$, ending the proof.

PROPOSITION 3.7. If A and B are LI-ideals of a lattice H implication algebra L, then $A \wedge B = A \cap B$.

Proof. Let $x \in A \land B$. Then $x = a \land b$ for some $a \in A$ and $b \in B$. Observe that $x = a \land b \le a$ (also b). It follows from (LI3) that $x \in A$ (also B) and hence $x \in A \cap B$. Conversely if $x \in A \cap B$ then $x = x \land x \in A \land B$. Therefore $A \land B = A \cap B$.

PROPOSITION 3.8. If A is an LI-ideal of a lattice H implication algebra L and $a \in L$, then the set $K := \{x \in L | x'a \in A\}$ is an LI-ideal of L.

Proof. Let $x, y \in K$. Then $x'a \in A$ and $y'a \in A$. It follows from (L2) that $(x \vee y)'a = (x' \wedge y')a = (x'a) \vee (y'a) \in A$ so that $x \vee y \in K$. Conversely let $x, y \in L$ be such that $x \vee y \in K$. Then $(x \vee y)'a \in A$. Using (I3), (4) and (9), we have

$$(x \lor y)'a = a'(x \lor y) = a'((xy)y) = (a'(xy))(a'y)$$

= $((a'x)(a'y))(a'y) = (a'x) \lor (a'y) = (x'a) \lor (y'a).$

Thus $(x'a) \lor (y'a) \in A$ which implies that $x'a \in A$ and $y'a \in A$ because A is an LI-ideal. This means that $x \in K$ and $y \in K$, completing the proof.

For any natural number n we define n(x)y recursively as follows: 1(x)y = xy and (n+1)(x)y = x(n(x)y).

Using (I1) repeatedly, we know that in a lattice implication algebra the following identity holds:

$$(11) z(y_1(y_2(\cdots(y_nx)\cdots))) = y_1(y_2(\cdots(y_n(zx))\cdots)).$$

As a special case of (11) we have

$$(12) \ z(n(y)x) = n(y)(zx).$$

PROPOSITION 3.9. For any elements $a, x, y_1, y_2, \dots, y_n$ of a lattice implication algebra L we have

(13)
$$y_1(y_2(\cdots(y_n(xa))\cdots)) = ((y_1(y_2(\cdots(y_n(xa))\cdots)))a)a.$$

Proof. The inequality

$$y_1(y_2(\cdots(y_n(xa))\cdots)) \leq ((y_1(y_2(\cdots(y_n(xa))\cdots)))a)a$$

follows from (7). Using (10), (11), (I1) and (I2), we get

$$\begin{aligned} & (((y_1(y_2(\cdots(y_n(xa))\cdots)))a)a)(y_1(y_2(\cdots(y_n(xa))\cdots))) \\ &= y_1(y_2(\cdots(y_n(x((((y_1(y_2(\cdots(y_n(xa))\cdots)))a)a)a)))\cdots))) \\ &= y_1(y_2(\cdots(y_n(x((y_1(y_2(\cdots(y_n(xa))\cdots)))a)))\cdots))) \\ &= (y_1(y_2(\cdots(y_n(xa))\cdots)))(y_1(y_2(\cdots(y_n(xa))\cdots)))) \\ &= 1, \end{aligned}$$

and hence $((y_1(y_2(\cdots(y_n(xa))\cdots)))a)a \leq y_1(y_2(\cdots(y_n(xa))\cdots))$. This completes the proof.

OBSERVATION 3.10. (Y. B. Jun et al. [3, Observation 2.8]) Suppose A is a non-empty family of LI-ideals of a lattice implication algebra L. Then $A = \bigcap A$ is also an LI-ideal of L.

Let A be a subset of a lattice implication algebra L. Then the least LI-ideal containing A is called the LI-ideal generated by A, written $\langle A \rangle$.

Noticing that L is clearly an LI-ideal containing A, in view of Observation 3.10, we know that the above definition $\langle A \rangle$ of A is well-defined.

The next statement gives a description of elements of $\langle A \rangle$.

PROPOSITION 3.11. (Y. B. Jun et al. [3, Theorem 2.9]) If A is a non-empty subset of a lattice implication algebra L, then

$$\langle A \rangle = \{ x \in L | a_n'(...(a_1'x')...) = 1 \text{ for some } a_1,...,a_n \in A \}.$$

The following corollary is immediate from Proposition 3.11.

COROLLARY 3.12. For any element a of a lattice implication algebra L, we have

$$\langle a \rangle = \{ x \in L | n(a')x' = 1 \text{ for some natural number } n \}.$$

Note that in a lattice H implication algebra the identity x(xy) = xy holds (see [7, Corollary 1]). Hence using Corollary 3.12 we obtain

COROLLARY 3.13. Let L be a lattice H implication algebra and $a \in L$. Then

$$\langle a \rangle = \{ x \in L | a'x' = 1 \} = \{ x \in L | xa = 1 \}.$$

LEMMA 3.14. (Y. B. Jun et al. [3, Theorem 2.2]) Let A be an LI-ideal of a lattice implication algebra L and let $x \in A$. If $y \le x$ (or equivalently $x' \le y'$), then $y \in A$ for all $y \in L$.

The following theorem describes how to generate an LI-ideal by both an LI-ideal and an element.

THEOREM 3.15. Let A be an LI-ideal of a lattice implication algebra L and let $a \in L$. Then

$$\langle A \cup \{a\} \rangle = \{x \in L | (n(a')x')' \in A \text{ for some } n \in \mathbb{N} \}.$$

Proof. Denote $A_a = \{x \in L | (n(a')x')' \in A \text{ for some } n \in \mathbb{N}\}$. Clearly $0 \in A_a$. Let $(yx)' \in A_a$ and $x \in A_a$. Then there exist $m, n \in \mathbb{N}$ such that $(n(a')((yx)')')' \in A$ and $(m(a')x')' \in A$. It follows that (n(a')(yx))' = u and (m(a')x')' = v for some $u, v \in A$, so that u' = n(a')(yx) and v' = m(a')x'. Then

$$1 = u'(n(a')(yx)) = u'(n(a')(x'y')) = u'(x'(n(a')y')) = x'(u'(n(a')y')),$$

i.e., $x' \leq u'(n(a')y')$. Using (6) we have

$$v' = m(a')x'$$

 $\leq m(a')(u'(n(a')y'))$
 $= u'(m(a')(n(a')y'))$
 $= u'((m+n)(a')y'),$

which implies that v'(u'(((m+n)(a')y')')') = v'(u'((m+n)(a')y')) = 1. Since $u, v \in A$, it follows from Proposition 3.11 that $((m+n)(a')y')' \in \langle A \rangle = A$. Hence $y \in A_a$ and A_a is an LI-ideal of L. Note that $(n(a')a')' = 1' = 0 \in A$ so that $a \in A_a$. Let $x \in A$. Since $x' \leq a'x' = ((a'x')')'$, it follows from Lemma 3.14 that $(a'x')' \in A$, i.e., $x \in A_a$. Thus $A \cup \{a\} \subseteq A_a$. Finally we should verify that A_a is the least LI-ideal containing A and A. Let A_a be any A_a is the least A_a and let A_a . Then A_a is the least A_a and let A_a . Then A_a is the least A_a and let A_a . Then A_a is the least A_a and let A_a . Then A_a is the least A_a and let A_a . Then A_a is the least A_a and let A_a . Then A_a is the least A_a and let A_a . Then A_a is the least A_a and let A_a is the least A_a .

$$(((n-1)(a')x')'a)' = (a'((n-1)(a')x'))' = (n(a')x')' \in B.$$

Since $a \in B$, it follows from (LI2) that $((n-1)(a')x')' \in B$. Repeating this process, we obtain $x = (x')' \in B$. Therefore A_a is the least LI-ideal containing A and a, i.e., $\langle A \cup \{a\} \rangle = A_a$. This completes the proof.

LEMMA 3.16. (J. Liu et al. [4, Corollary 1]) Let L be a lattice implication algebra and $a, b, x \in L$. If n(a)x = 1 and m(b)x = 1 for some $m, n \in \mathbb{N}$, then there exists $k \in \mathbb{N}$ such that $k(a \vee b)x = 1$.

THEOREM 3.17. Let A be an LI-ideal of a lattice implication algebra L. Then

$$\langle A \cup \{a\} \rangle \cap \langle A \cup \{b\} \rangle = \langle A \cup \{a \land b\} \rangle$$

for all $a, b \in L$.

Proof. Let $x \in \langle A \cup \{a\} \rangle \cap \langle A \cup \{b\} \rangle$. By Theorem 3.15, there are $m, n \in \mathbb{N}$ such that $(n(a')x')' \in A$ and $(m(b')x')' \in A$. Hence (n(a')x')' = u and (m(b')x')' = v for some $u, v \in A$. It follows that n(a')x' = u' and m(b')x' = v' so that 1 = v'(u'(n(a')x')) = n(a')(v'(u'x')) and 1 = u'(v'(m(b')x')) = m(b')(v'(u'x')). Using Lemma 3.16, there exists $k \in \mathbb{N}$ such that $k(a' \vee b')(v'(u'x')) = 1$. Since $a' \vee b' = (a \wedge b)'$, we have

$$1 = k(a' \lor b')(v'(u'x')) = k((a \land b)')(v'(u'x')) = v'(u'(k((a \land b)')x')).$$

Applying Proposition 3.11 we get $(k((a \wedge b)')x')' \in \langle A \rangle = A$ and hence $x \in \langle A \cup \{a \wedge b\} \rangle$ by Theorem 3.15. Thus

$$\langle A \cup \{a\} \rangle \cap \langle A \cup \{b\} \rangle \subseteq \langle A \cup \{a \land b\} \rangle$$
.

Conversely if $x \in \langle A \cup \{a \land b\} \rangle$, then $(n((a \land b)')x')' \in A$ for some $n \in \mathbb{N}$. Since $a \land b \leq a, b$, therefore $a' \leq (a \land b)'$ and $b' \leq (a \land b)'$. Using (6) repeatedly, we get $n((a \land b)')x' \leq n(a')x'$ and $n((a \land b)')x' \leq n(b')x'$, which imply that $(n(a')x')' \leq (n((a \land b)')x')'$ and $(n(b')x')' \leq (n((a \land b)')x')'$. Applying Lemma 3.14, we obtain $(n(a')x')' \in A$ and $(n(b')x')' \in A$, i.e., $x \in \langle A \cup \{a\} \rangle$ and $x \in \langle A \cup \{b\} \rangle$. Hence $x \in \langle A \cup \{a\} \rangle \cap \langle A \cup \{b\} \rangle$ and so $\langle A \cup \{a \land b\} \rangle \subseteq \langle A \cup \{a\} \rangle \cap \langle A \cup \{a\} \rangle$. This completes the proof.

COROLLARY 3.18. Let A be an LI-ideal of a lattice implication algebra L. For any $a_1, a_2, \dots, a_n \in L$ we have

$$\bigcap_{i=1}^{n} \langle A \cup \{a_i\} \rangle = \langle A \cup \{a_1 \wedge a_2 \wedge \cdots \wedge a_n\} \rangle.$$

Proof. Straightforward by induction on n.

COROLLARY 3.19. Let A be an LI-ideal of a lattice implication algebra L. If $a_1 \wedge a_2 \wedge \cdots \wedge a_n \in A$ for all $a_1, a_2, \cdots, a_n \in L$, then

$$\bigcap_{i=1}^n \langle A \cup \{a_i\} \rangle = A.$$

Proof. Using Corollary 3.18, we have

$$\bigcap_{i=1}^{n} \langle A \cup \{a_i\} \rangle = \langle A \cup \{a_1 \wedge a_2 \wedge \dots \wedge a_n\} \rangle = \langle A \rangle = A.$$

4. Prime LI-ideals

DEFINITION 4.1. A proper LI-ideal P of a lattice implication algebra L is said to be *prime* if whenever $x \wedge y \in P$ then $x \in P$ or $y \in P$ for all $x, y \in L$.

We provide an equivalent condition for a proper LI-ideal to be prime.

THEOREM 4.2. Let P be a proper LI-ideal of a lattice implication algebra L. Then P is prime if and only if $(xy)' \in P$ or $(yx)' \in P$ for all $x, y \in L$.

Proof. Assume that P is a prime LI-ideal of L and let $x,y\in L$. Then

$$1 = (x \lor y)(x \lor y) = ((x \lor y)x) \lor ((x \lor y)y)$$
$$= (1 \land (yx)) \lor ((xy) \land 1) = (yx) \lor (xy),$$

and so $(yx)' \wedge (xy)' = ((yx) \vee (xy))' = 1' = 0 \in P$. Since P is prime, it follows that $(xy)' \in P$ or $(yx)' \in P$. Conversely let P be a proper LI-ideal of L and suppose $(xy)' \in P$ or $(yx)' \in P$ for all $x, y \in L$. Let $x, y \in L$ be such that $x \wedge y \in P$. If $(yx)' \in P$, since

$$(y(yx)')' = ((yx)y')' = ((x'y')y')' = (x' \lor y')' = x \land y$$

we have $y \in P$ by (LI2). Similarly $x \in P$ whenever $(xy)' \in P$, ending the proof.

Using Theorem 4.2 we have the extension property for prime LI-ideal. The proof is straightforward and is omitted.

THEOREM 4.3. (Extension property for prime LI-ideal) Let P be a prime LI-ideal of a lattice implication algebra L. Then every proper LI-ideal containing P is also prime.

THEOREM 4.4. (Prime LI-ideal theorem) Let A be an LI-ideal of a lattice implication algebra L and S a \land -closed subset of L (i.e., $x \land y \in S$ whenever $x, y \in S$) such that $A \cap S = \emptyset$. Then there exists a prime LI-ideal P of L such that $A \subseteq P$ and $P \cap S = \emptyset$.

Proof. The existence of an LI-ideal P being the maximal element of the family of all LI-ideals that contains A and have empty intersection with S follows from an application of Zorn's lemma. We now show that P is prime. Suppose P is not prime. Then there exist $x, y \in L \setminus P$ such that $x \wedge y \in P$. By means of the maximality of P, we know that $S \cap \langle P \cup \{x\} \rangle \neq \emptyset$ and $S \cap \langle P \cup \{y\} \rangle \neq \emptyset$. Taking u and v in $S \cap \langle P \cup \{x\} \rangle$ and $S \cap \langle P \cup \{y\} \rangle$, respectively, then $u \wedge v \in S$ because S is \land -closed. Since $u \wedge v \leq u, v$, it follows that $u \wedge v \in \langle P \cup \{x\} \rangle$ and $u \wedge v \in \langle P \cup \{y\} \rangle$. Using Theorem 3.17, one can know that

$$u \wedge v \in \langle P \cup \{x\} \rangle \cap \langle P \cup \{y\} \rangle = \langle P \cup \{x \wedge y\} \rangle = P.$$

Hence $u \wedge v \in S \cap P$, which is a contradiction. Therefore P is prime, ending the proof.

COROLLARY 4.5. Let A be an LI-ideal of a lattice implication algebra L. If $x \in L \setminus A$, then there is a prime LI-ideal P of L such that $A \subseteq P$ and $x \notin P$.

Proof. Let $S = \{y \in L | xy = 1\}$. If $y_1, y_2 \in S$, then $xy_1 = 1$ and $xy_2 = 1$. It follows that $x(y_1 \wedge y_2) = (xy_1) \wedge (xy_2) = 1$ so that $y_1 \wedge y_2 \in S$, i.e., S is \wedge -closed. Let $y \in S$. Then xy = 1 and hence $(xy)' = 1' = 0 \in A$. Since $x \notin A$, we have $y \notin A$ by (LI2). Hence $A \cap S = \emptyset$. Using Theorem 4.4, there is a prime LI-ideal P of L such that $A \subseteq P$ and $P \cap S = \emptyset$. Since $x \in S$, the identity $P \cap S = \emptyset$ implies $x \notin P$. This completes the proof.

THEOREM 4.6. For a lattice implication algebra L the following are equivalent:

- (i) LI-ideal {0} is prime.
- (ii) every proper LI-ideal of L is prime.
- (iii) (L, \leq) is a totally ordered set.

Proof. (i) \Rightarrow (ii) is by Theorem 4.3, and (ii) \Rightarrow (i) is obvious. Assume that (L, \leq) is a totally ordered set. Then xy = 1 or yx = 1, and hence $(xy)' = 1' = 0 \in \{0\}$ or $(yx)' = 1' = 0 \in \{0\}$ for all $x, y \in L$. It follows from Theorem 4.2 that $\{0\}$ is a prime LI-ideal of L. Conversely if $\{0\}$ is a prime LI-ideal of L, then $(xy)' \in \{0\}$ or $(yx)' \in \{0\}$ for all $x, y \in L$, that is, (xy)' = 0 or (yx)' = 0; hence xy = 1 or yx = 1

for all $x, y \in L$. This shows that (L, \leq) is a totally ordered set. This completes the proof. \Box

References

- S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York (1981).
- [2] Y. B. Jun, Implicative filters of lattice implication algebras, Bull. Korean Math. Soc. 34(2) (1997), 193-198.
- [3] Y. B. Jun, E. H. Roh and Y. Xu, LI-ideals in lattice implication algebras, Bull. Korean Math. Soc. 35(1) (1998), 13-24.
- [4] J. Liu and Y. Xu, Filters and structure of lattice implication algebras, Chinese Science Bulletin 42(18) (1997), 1517-1520.
- [5] Y. Xu, Homomorphisms in lattice implication algebras, Proc. of 5th Many-Valued Logical Congress of China (1992), 206-211.
- [6] ______, Lattice implication algebras, J. Southwest Jiaotong University 1 (1993), 20-27.
- [7] Y. Xu and K. Y. Qin, Lattice H implication algebras and lattice implication algebra classes, J. Hebei Mining and Civil Engineering Institute 3 (1992), 139-143.
- [8] ______, On filters of lattice implication algebras, J. Fuzzy Math. 1 (1993), 251-260.

Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea E-mail: ybjun@nongae.gsnu.ac.kr