J. Korean Math. Soc. 36 (1999), No. 2, pp. 267298

A DIOPHANTINE CONSTRUCTION OF
AN EXACT ALGEBRAIC FORMULA
FOR GRADED PARTITION FUNCTIONS

Sun T. SoH

ABSTRACT. A geometric construction of an exact algebraic formula
for graded partition functions, of which a special one is the classi-
cal unrestricted partition function p(n), from a diophantine point
of view is presented. Moreover, the involved process allows us to
compute the values of a graded partition function in an inductive
manner with a geometrically built-in self-error-checking ability at
each step for correctness of the computed values of the partition
function under consideration.

1. Introduction
One first reviews notation and terminology.
NOTATION. Let A = {1,2,3,4, ...,¢ } and n a positive integer < g.

p(n) = the number of partitions of n into natural integers without
any restrictions.

pa(n) = that of n into parts belonging to A.

pam(n) = that of n into parts not exceeding m and belonging to A.

pf,:") (n) = that of into at most m summands, all belonging to A.

pff)(n) = that of n into distinct summands, all belonging to A.
po(n) = that of n into odd positive integers belonging to A.
pe(n) = that of n into even positive integers belonging to A.

Received March 12, 1998.

1991 Mathematics Subject Classification: 11P81, 14M10, 14N10.

Key words and phrases: complete intersections, computation of partition
functions.

This research was supported by Korean Ministry of Education through Research
Fund BSRI-97-1438.

268 Sun T. Soh

One may recall that for a given positive integer n the number p(n)
is equal to the number of non-isomorphic abelian groups of order p* for
prime p [7].In representation theory, one may also recall that p(n) is
equal to that of conjugacy classes of the symmetric group S, and hence
is equal to that of irreducible representation of S,, and hence is equal
to that of different Young diagrams or Ferrers diagrams, and hence is
equal to that of orthonormal basic characters xy for Cgs(S,).[4]. This
indicates that the study of partition functions is no longer an isolated
subject.

On the other hand, as the partition functions in the above Notation
indicate, it is very easy to define a new partition function by introduc-
ing somewhat mathematically meaningful restrictions on other partition
functions of which a very special one is the well-known classical unre-
stricted partition function p(n). This aspect is certainly a property of
partition functions in general.

When one considers formulas for a given partition function, one should
first note that there are basically two different types of them, either
exact, i.e., complete, with which one computes the value of the function
for a single natural number, or recursive, with which one computes the
values in a recursive manner. For different reasons, we usually need both
types.

The purpose of this paper is to establish a geometric construction of a
new single exact, i.e., complete, algebraic formula for “graded” partition
functions, which is defined in Section 2, of which specializations are, for
instances, each of the above partition functions. Here, the word “alge-
braic” exactly means that we do not need any approximated additions,
subtractions and/or multiplications of truncated fractions of real num-
bers (which is indeed the case of the Rademacher’s formula, Eq. (3) be-
low, for the classical unrestricted partition function p(n)) in computing
the values of the partition function under consideration. Moreover, one
also obtains, as an easy corollary of the main result, a quasi-recursive
formula associated to the complete one with a built-in error-checking
and/or correcting ability. As long as actual computation with computer
is concerned, this recursive formula and its generalizations in [14] are
new ones providing us with some fast algorithms, according to Prof.
George E. Andrews at Penn. St. Univ.

As one shall see clearly later, these results are obtained as a corollary
of the author’s previous results on a homogeneous complete intersection

Graded partition functions 269

in Algebraic Geometry, by the process of passing through the areas of the
so-called Formal Geometry to which, for instance, the theory of g-series
belongs.

EXAMPLE 1. Here are the value of p(r) for various n which are taken
from my computation of p(n)for n up to 5000 in a tolerable amount of
time of 80 Minutes in a small sized my home PC by simply expanding
the following polynomial in ¢ (i.e., the direct enumeration of the
generating function of p(n) modulo t°%*):

Tt 4+ 59 (142 e 4+ 50
L+t %Y (1 4 £2500 4 45000y
(14 P (1 4 392 (14 $999) . (1 4+ £990), modulo 3%

of which the n-th coefficient is equal to p(n) for n up to 5000, and all
this was due to a rapid development in software and hardware industry
in recent decades. Omne may recall that such a modulo computation
requires O(n?) of operations so that its time efficiency is not that bad.
But, several computations for some large numbers certainly tell us that
its space efficiency is not quite good. On the other hand, one is naturally
lead to wonder whether these computed values are indeed all correct and
one begins to wonder how to verify that they are all correct.

p(10) = 42.

p(100) = 190, 569, 292. (9 digits)

p(200) = 3,972,999, 029, 388. (13 digits)

p(300) = 9, 253,082, 936, 723, 602. (16 digits)

p(400) = 6,727,000, 051, 741, 041, 926. (19 digits)

p(500) = 2,300, 165, 032, 574, 323, 995, 027. (22 digits)

p(600) = 458,004, 788, 008, 144, 308, 553, 622. (24 digits)

p(700) = 60,378, 285, 202, 834, 474, 611, 028, 659. (26 digits)

p(800) = 5,733,052, 172, 321, 422, 504, 456, 911, 979. (28 digits)

p(900) = 415,873,681, 190, 459, 054, 784, 114, 365, 430. (30 digits)

p(1000) = 24,061,467, 864, 032, 622, 473, 692, 149, 727, 991. (32 digits)

p(2000) = 4,720, 819, 175, 619, 413, 888, 601, 432, 406, 799, 959, 512,
200, 344, 166. (46 digits)

p(3000) = 496,025, 142, 797, 537, 184, 410, 324, 879, 054, 927, 095, 334,
462,742,231, 683, 423,624. (57 digits)

p(4000) = 1,024, 150, 064, 776, 551, 375, 119, 256, 307, 915, 896, 842,
122, 498, 030, 313, 150, 910, 234, 889, 093, 895. (67 digits)

270 Sun T. Soh

p(5000) = 169,820, 168, 825, 442, 121, 851, 975, 101, 689, 306, 431, 361,
757,683, 049, 829, 233, 322, 203, 824, 652, 329, 144, 349,
(75 digits)

As this example indicates, the number p(n) grows so fantastically fast
as n increases that it was probably this reason why most mathematicians
in the past tried to figure out its asymptotic growth, utilizing, for in-
stance, some analytic methods. Moreover, even if one is able to compute
numbers such as those in the above example, the result itself does not
tell us what’s really going on during computation of such big numbers,
and consequently one does not have any insight into the inter-related
arithmetic behavior of the values of p(n) for various = at all.

It is well known that Euler and his successors introduced the method
of generating functions, which is still commonly utilized in the study
of theory of partitions in connection with some algebraic methods such
as decomposition into partial fractions, or in connection with analytic
methods such as Cauchy’s theorem on residues, contour integrations, or
Tauberian theorems, etc.

Since the power series expansion of the generating function of p(n)
is invertible in the ring of formal power series Z{[¢]] which is an object
of the so-called Formal Geometry, as its constant term is 1 £ 0, one
obtains its inverse described in Theorem 2 below and from the fact that
their product must be equal to 1, one finally obtains a famous recursive
formula for p(n):

THEOREM 1. (Euler) Given a natural number n, one has

(1) pn) = pn-1)+p(n-2)~p(n—5)—pn—"7)+---.
+H=1)"*p(n —ny) + - -,

where the sum is taken until the so-called “pentagonal numbers” n; =
J(37 £1)/2 are < n and by definition p(0) = 1.

One can develop an algorithm based on this recursive formula and
it is well known that it only needs O(n®?) operations so that one may
say that it is very efficient.

THEOREM 2. (Euler’s pentagonal number theorem)

(2) ﬁu -t)=1+ i(—nﬂ'tﬂ'@f—lm(l +).

Graded partition functions 271

The proof of these two theorems are nowadays a standard material in
most books in Number Theory.

It is well known that P. A. MacMahon used the recursive formula in
Eq. (1) in 1916 to compute the values of p(n) for n up to n = 200.
In particular, when one is interested in some arithmetic behavior of the
values of partition functions, an efficient recursive formula such as above
will be very helpful to us, and it was indeed the case of Ramanujan and
Hardy. According to Prof. George Andrew’s account in his book (p. 150
in {1]), G. H. Hardy and S. Ramanujan were the first mathematicians
who gave an asymptotic formula for p(n) by a divergent series in 1917,
the first term of which is

1 d [exp(Fy/n—3)
27r\/§d'n n—1 ’

24

The first five terms of the Hardy-Ramanujan formula give the “cor-
rect” value of p(200), which is 3,972,999, 029, 388. But, one should note
that this kind of correctness is somewhat based on the assumption that
one knows in advance the exact values of p(n) for natural numbers n
under consideration. Moreover, it is dependent on n that how many
first terms be taken to get such a result.

In 1937, H. Rademacher discovered an exact, i.e., complete, formula
for p(n) in the form of a convergent series, which yields Hardy and Ra-
manujan’s asymptotic formula as a corollary.

THEOREM 3. (Rademacher) Given a natural number n, one has

1 & d sinh((7/k)1/(2/3)(n - 3;))
(3 p(n) = i ; Ak(n)\/’;%‘ - ,
where
Ai(n) = Z @, exp(—2minh/k),
0<h<k
(h,k)y=1
where

wp i = exp(nis(h, k)),

272 Sun T. Soh

is a 24k-th root of unity and where

k-1
e N W A e LT
S(h’k)—;(k m 2>(k [k] 2)
is the so-called Dedekind sum.

It is well known that this theorem is based on Cauchy’s theory of
contour integration and the theory of modular forms. The proof of
this hard-to-understand approximation theorem, yet theoretically very
important, to an exact integer value is well-presented, for instance, in
Prof. Andrew’s book. (pp. 71-87 in [2]).

This is the formula some mathematicians up to now insisted to call
an exact “algebraic” formula for p(n), although it is analytic in nature.
I humbly request the reader to compare Eq. (3) with my formula Eq.
(18) or Eq. (19), which is also valid for the classical unrestricted par-
tition function p(n), in order to see a big difference between them. In
particular, my formula is not only complete, i.e., exact, but also purely
algebraic, because it terminates after exactly the first (n+1) terms for a
given natural number n and there is no trace of analysis in my formula.

WARNING. (The following interesting remarks were added very re-
cently.) Of course, one can develop an algorithm based on the Radema-
cher’s formula for the value of p(n) for a single input n. However, in
developing such an algorithm, there are several things one should keep
in mind. Among them, for instance, since truncated fractional real num-
bers of very much different size are added, subtracted and/or multiplied
to become a part of the integer value of p(n) for a given n, one has to
be very careful about the problem of adjusting “precision” during actual
computation, otherwise, one will never get a reliable correct result at all.
Another consideration, for instance, is that in order to make it efficient
one is advised to utilize a property of the so-called Dedekind sum. This
property is quite useful since one does not know, in advance, how many
terms has to be added to obtain a result which is sufficiently close enough
to the true integer value of p(n). Because of these approximation-related
problems unavoidably associated to Rademacher’s formula as well as its
non-deterministic characteristic, it is still quite difficult for me to accept
the Rademacher’s formula as a practically reliable means in computing
the integer value of p(n) for a given single n, although I believe I myself
already developed a very reliable program for it.

Graded partition functions 273

If you are only interested in computing the value of p(n) for a single
natural number n, the Rademacher’s formula will answer you very effi-
ciently, provided that you really trust reliability of the implementation
of the algorithm for it. According to my experience, this is not an easy
matter to ignore or to put aside, and it is probably this reason why
the well-known Computer Algebra System such as MAPLE does not
compute the value of p(n) for a single input n using the Rademacher’s
formula for it.

A rather disturbing evidence of this is that, the author has recently
found a serious error in p.70 of Prof. George Andrews’ book {2], The
Theory of Partitions, 2nd printing with revision date in 1981, in which
intermediate computational results for the value of p(200) based on
Rademacher’s formula up to the first eight terms of it are presented
as an evidence of the strength and practical usefulness of Rademacher’s
formula in order to convince other mathematicians. More precisely, the
value of the third term, —87.555, presented in his book, turned out to
be not correct, according to my computation of the value of p(200) with
my own program for Rademacher’s formula. It is quite possible that this
error was accidentally introduced by the late Prof. Rademacher himself.
Immediately after finding the error, I reported it to Prof. Andrews and
he promised that it will be soon corrected in the next printing of his
book.

I had to spend sometime with a great effort in order to overcome
successfully, I believe, the above mentioned serious difficulties associated
to the implementation of the Rademacher’s formula. In my opinion,
reliability of a program should always go first, and then its speed. If
one developed somewhat a fast program for a formula which is not very
reliable, who will even attempt to use it?

Another disturbing evidence of the difficulties associated with the im-
plementation of the Rademacher’s formula is that, the value of p(10°)
which is computed by P. Shiu with his program for it and presented in
his recent paper [10] turned out to be wrong. His result is —58 off the
true value of it. Since the number of digits taken by the value of p(106)
is 1108, this is all about the reliability question of the program. With
my own program for the Rademacher’s formula for p(n), I computed the
value of p(10°) and the result was, to my regret, P. Shiu’s result plus 58.
After strengthening computational conditions several time for accuracy
increase, I computed, at three different PC’s, the value of p(10°) several

274 Sun T. Soh

times and obtained all the time the same result which is bigger than
P. Shiu’s result by 58. Since this does not mean absolutely that my
result for p(10°) is indeed correct, I had to spend about 3 weeks, using
a different method, to further verify that my result is indeed correct
with my new Pentium Pro PC running at 200 MHz, and this further
verification was definitely quite a pain to me. When I contacted him
with my correct result, P. Shiu blamed that the Computer Algebra Sys-
tem, MATHEMATICA, which he used for computing the value of p(10°%)
with his own implementation of the Rademacher’s formula, caused such
a terrible computational error. It seemed to me that he was not aware of
seriousness of the problems I mentioned above and he trusted too much
that MATHEMATICA will automatically resolve such problems. It will
be certainly an interesting subject to discuss the problems associated
with the implementation of the Rademacher’s formula for the classical
partition function p(n) and some appropriate methods to overcome such
difficulties. I am planning to write another paper focusing on these prob-
lems. The current status of my program for the Rademacher’s formula
for p(n) is very reliable, but it requires further evolution to speed up its
performance.

Also in my later paper, I shall discuss how one can check the validity
of the value of p(n) for a given n in a recursive and exact manner. With
this recursive method, I was able to check, spending only less than 3 days
with my new Pentium Pro PC running at 200 MHz with 128 Mbytes of
RAM, that all the values of p(n) which I computed recursively using
Euler’s formula for n from 1 up to 502090 were indeed correct. This is,
to my best opinion, a really efficient and truly reliable method to verify
not a single value but all of them up to the last one are all correct, with
only one demand that it may need more memory as the last n gets big.
I also told this new recursive method to Prof. George E. Andrews in
Aug, 1997. Since this new method is completely different from the one
successively developed in this paper and its generalization in [14], we
are, particularly in the case of the classical partition function p(n), now
in a lot better position to compute and verify the values of p(n). But
for a general graded partition function pyp(n) over a general multiset M,
this new method does not work. (This is the end of Warning).

There are fairly many standard results in terms of generating func-
tions of partition functions which I don’t have to mention them here
even for reviewing purpose, though the method of generating functions

Graded partition functions 275

is still very useful. For instance, by comparing their generating functions
one has

LEMMA 1. p¥9(n) = po(n).

Another line of thought is combinatorial methods, especially the the-
ory of graphs. With the help of this, by analyzing the so-called Young
diagram or Ferrers diagram, one has

LEMMA 2. (1) = pam(n).

For more about elementary historical accounts of the subject, one
may refer to [6] [5],{1],[2] or to a section in EDM [8].

Euler, Jacobi, and their immediate successors did not seem to have
tried to estimate the size of pa(n). The construction made in Section 3,
when specialized, gives an exact formula for pa(n).

Before one goes to Section 3 for main results, one may note that in
consideration of py (n) for a given n, the order of the involved summands
is irrelevant by definition; hence rearranging the summands if necessary
and grouping together summands that are equal, every partition can be
written uniquely in the form

n = v(1)d(1) + v(2)d(2) + - - - + v(B)d(i) + - - -,

where d(1),d(2), - - - , are distinct elements of A in some fixed order, and
where the v(i) are positive integers. One also notes that this is a finite
sum simply because all the d(¢) showing up such a sum are necessarily
less than or equal to the given n. As you shall see it later, this is pre-
cisely the reason why the method presented in Section 3 is significant
in computing pa(n) for a given n. Each coefficient v(i) indicates how
often a given summand d(i) € A occurs in the partition under consider-
ation, and it is called the frequency of d(i) in that partition of n; hence
any given partition is completely determined by the set of its frequen-
cies; consequently the number pa(n) of partitions of n is precisely the
number of distinct solutions of the above Diophantine equation. It is
essentially this reason why the method, which I am going to develop in
Section 3, should work with one hundred percent accuracy.

As one can see in Section 3, the above line of thought toward the
size of the solution set of certain Diophantine equation is crucial to my
construction, only with one major exception that the above d(i) may
not have to be all distinct in my construction. One notes that such a

276 Sun T. Soh

restriction of all the participants being distinct in the case of the classical
unrestricted partition function p(n) is quite unnatural to assume from
the beginning, because, for instance, the same number could be chosen
for different d(i)’s if one decides each d(i) to have different colors to
begin with, i.e., if one is given a multiset.

2. The notion of graded partition functions

After a moment of thought, one should, first of all, recognize that for
any partition function introduced in Section 1, one has pa(n) = pa m(n)
for all n < m for a suitably chosen finite subset A for the given n.
Based on the observation made in the last part of Section 1, I introduce
a graded partition function pp(n) as follows:

DEFINITION 1. Let M = U[_,{d(¢);,d(%)2,- - - ,d(i)s} be a multiset
where r a positive integer or 7 = 1,2,3,- - -, each d(i); = d(i) a positive
integer, and each ¢; a positive integer. Given a positive integer n, denote
by

pm(n) = the number of partitions of ninto parts belonging to M.

This one is clearly unrestricted and is, from now on, called a graded
partition function over M. One also notes that the elements of M
are equally well described as those d(z) of which some may be the same.
Then one manages to obtain

THEOREM 4. The generating function Fy(t) of pp(n) is represented
as

(4))= T e
d(i)eM

where o; = # of the same d(i) in M for each i.

Proof. 1t is Eq. (15) in Section 3. O

In other words, a partition function pyp(n) over a multiset M is called
graded if its generating function is a product form of Eq. (4). In the
next section, it will be self-clear why I called them “graded”.

Graded partition functions 277

3. A geometric construction of an exact algebraic formula
for graded partition functions

In order to obtain a single exact algebraic formula for graded partition
functions introduced in Section 2, one may modify the problem into the
problem of a homogeneous complete intersection in Algebraic Geometry
and it goes as follows.

Let A = k[Xj,- -+, Xm] be the polynomial ring in m indeterminates
X;, over a field k and B = k[f1, -, fm], Where f; are homogeneous
polynomials of positive total degree d(i) for each i. One notes that some
‘of the d(i) may be the same, and hence it reflects the whole situation
explained in both Section 1 and Section 2.

Under this set-up, I shall prove:

THEOREM 5. Suppose that A is a free B-module of finite rank and
let {ey;} be a B-basis of A. Then the number s, of those a; with the
same homogeneous degree n, is determined by

9 m
(5) S sactt = [+t 807,
n=0 i=1
where ¢ = max{(deg(a;)}; consequently, the B-rank of A is equal to
the degree of the ideal (fi,+*- , fm) in A, namely, the product deg(f;) -
deg(f>) - - - deg(fm)-

Thus, if the given m homogeneous polynomials fi,--: , f in m vari-
ables of positive degree over, for instance, the field of complex numbers
C, are such that A is a free B-module of finite rank, then we can easily
construct a finite B-basis of A, by utilizing the above theorem and by
applying the Buchberger’s algorithm for Groebner bases, whenever it is
necessary.

EXAMPLE 2. With f; = Xf @ over the field C of complex numbers for
i=1,---,m, it is left to the reader to check that A is a free B-module
of finite rank being equal to the product d(1) - d(2) - - - d(m).

As one shall see below, the algebraic relations established in the proof
of this theorem are “locally” a theoretical basis for a diophantine con-
struction of an exact algebraic formula for the graded partition function

pm(n).

278 Sun T. Soh

Proof of Theorem 5. We first recall some elementary facts about
the canonical grading structures on A and B. The polynomial ring
A = ® (A, is positively graded by total degree with Ay = k. Thus
given n € N, A, is a finite dimensional k-vector space of which a k-basis
consists of all monomials of total degree n and hence we get

(6) dime(A,) = (m - 1) .

n
Moreover, B = @32 B, is the induced positive grading on B with B, =
BN A,, where

finite m m
B, = Z pi (f,-"(z)> €B:n= Z v(t)d(7) for each j
J i=1 j i=1

Thus, each B, is also a finite dimensional k-vector space with a k-basis

consisting of those products f ... o(m) satisfying

(7) n= v(i)d(s).
i=1
From this, we thus see that dim(B,) is not dependent on the f; them-
selves but on the total degrees d(i) of the f;. Moreover, we clearly see
that dim; B, = 0 if n < min;<;<,»{d(3)}.
Now, A is a free B-module of finite rank by hypothesis, and hence we
can write A as

A= @:=1B (6 43

for some homogeneous generators «; of A over B, each of which is nec-
essarily a component, i.e., a term, i.e., a monic monomial, of positive
total degree such that deg(a) < --- < deg(a,). Then since A consists
of all the homogeneous polynomials of every degree > 0, we must have,
for instance, that, for each j with 0 < j < minjc;<m{d(4)}, there exist
more than or equal to one number of ; such that deg(a;) = j. Taking
these into consideration we must have that for each n > 0,

An = &1 Br—deg(on) Y-
Thus,

Graded partition functions 279

(8) dimy(An) =Y dimy(B,_gegan@) = D dimi(Br-deglas));

i=1 i=1
where dimy(B;) = 0 if j < 0. Since some o; may have the same total
degree, we then look at the right side more carefully:

DEFINITION 2. Under this situation, we define a function s : N — N
by sending n + s, = the number of those ; such that deg(a;) = n,
where N = {0,1,2,3,---}.

Thus in particular, s, = 0 if n > ¢ = max{deg(a;)}; hence we clearly
have,

q
(9) ;‘ankB(A) = Z Sn.
n=0

From now on, 1 shall call the list (s, ..., ;) of finitely many non-zero s,’s
the arithmetic invariants of the rank. One notes that it only depends
on the given positive integers m and n.

Since s; = the number of those ¢; such that deg(c;) = j, we obtain
the following equality from Eq. (8):

(10) dimy(A,) = > _ dimg(Bn_;) - 5,
jeN

where s; = 0 if j > ¢ = max(deg(a;)) and by Eq. (7), each dimy(B,)
is only dependent on the total degrees d(i) of the f;. Thus when n
runs through N, we see that the s; are also only dependent on the total
degrees d(i) of the f; for fixed m. In particular, this indicates that one
can work with the monomials Xf (l), cee ff,(m), instead of fi,-++, fin, in
order to compute both the s; and the B-rank of A. \

Now the basic question is how one can “compute” each of the s,.
Once they are computed then Eq. (9) determines the B-rank of A. But
we can pursue more than that.

We shall see below that we can avoid the intermediate computations
of dimy A,, and dim;, B, for various n if we are only interested in deter-
mining the rank of A over B as is described in the theorem. Moreover,
we shall also see, at some stage below, how the s, can be explicitly
computed for each n.

280 Sun T. Soh

For this purpose, we introduce

DEFINITION 3. We define the following power series in an undeter-
minate ¢,

o0 (e 0]
a(t) =) dimy(4,)-t", b(t) = > dimy (B
n=0 n=0

Then one can easily see that Eq. (10) becomes

(11) = b(t) (z -) ,

n=0

where Zn _o Sn - t" is a polynomial in ¢ with coefficients in N where s, is
defined in Definition 2. Since

ﬁlit ﬁ(1+t+ + 7@ 4 i

n=0
where a, = #{n = Z"ﬁ v(i) : v(i) > 0}, and hence

(12) a, = dimg(A4,).

Thus we have

o1
(13) a(t) = 1} g
Also since
m m ' - o
11 1 _td(l) H (14 40 o 6 Ly = ;”"'”’
where b, = #{n =" v()d(i) : v(s) > 0}, and hence
(14) by = dimg(B,).

Thus we have

O
Thus, Eq. (11) becomes

Graded partition functions 281

m

(16) zq:sn = %% =[Ja+t+.. + e,

where ¢ = max{deg(®;)}.
In particular, taking ¢ = 1, we obtain from Eq. (16) that

(17) rankg(A) = [40),
i=1
and this finishes the proof of the theorem. 0

REMARK 1. The above proof also shows the following. By expanding
the right side of Eq. (16) for a given m and the d(), we can explicitly
compute the arithmetic invariant (sg,---,s,) of the rankpA. As we
have seen before, Eq. (16) also tells us that each component s, of the
arithmetic invariant is only dependent on total degrees d(i) of homoge-
neous polynomials f; with which one started. Thus, if one is interested
in the computation of the arithmetic invariants and hence the rankgA,
then one can safely replace the f; given at the start with the Xf @) ,
7 = 1’ cee ML

REMARK 2. On the other hand, one notes that Eq. (7) above tells
us that dimy B, is equal to the value of the graded partition function
pm(n) for a given positive number n and for those possibly non-distinct
m summands d(i) used in representation of 7, namely

n = v(1)d(1) + v(2)d(2) + - - - + v(m)d(m)

where d(i) are elements of the multiset M which are actually used as
summands to represent the given n. In particular, the first two Lemmas
1 and 2 tell us which of them are in fact the same as other computable
ones.

Based on these remarks, I obtain the main result of this paper as a
corollary of the above theorem:

THEOREM 6. Given a non-empty multiset M, there exists a list of
positive integers (o, s1, -~ ,54) (cf. Eq. (16)), called the arithmetic

282 Sun T. Soh

invariants of M, such that the graded partition function pyp(n) is repre-
sented as

(18) m(n):B—niQi(so,sl,---,s»(m*‘”"') - 1), neN

n—1
i=0

where m is the number of those d(i) (of which some may be the same)

belonging to M, and where each Q;(so, - - - , s;) is a uniquely determined
polynomial in sy, si,---,s; with integer coeflicients (cf. Corollary 1
below).

REMARK 3. One first notes that Eq. (18) is the reciprocal of Eq.
(10), that is,

n

dimy(B,) = > (=1)'Qi(s0, 51, --., ;) dimg (A,_s),

=0

where)
(m+ (n—l) - 1) — dimg(A,_;) = 0

n—1

for n < 14, simply because of the canonical positive grading on A =
k[X1, X3, ..., X;]. Thus Eq. (18) can be safely rewritten as

n—1
i=0

although it is a finite sum of the first (n + 1) alternating terms.

Secondly, one shall see in the proof of this theorem that each partition
function mentioned in Section 1 is represented by this “single” exact
algebraic formula, Eq. (18), only with the different s, s1, ..., sq which
are dependent on M, whereas the polynomials Q;(so, s1, ..., ;) in the s;
themselves are not dependent on the given m, i.e., the size of the given
M, but are only dependent on 7. In this sense, one may say that Eq. (18)
is a universal representation of a certain class of partition functions
which includes those mentioned in Section 1.

Since the s; in Eq. (16) are generally dependent on M, one may have
to write them as s;,, if one needs to indicate them in a more precise
manner. Such a situation will show up later.

Proof of Theorem 6. One notes that since py(n) = dimy(B,) in Eq.
(10) with dim,(B;) = 0 if j is a negative integer, Eq. (10) is a system of

Graded partition functions 283

linear equations for multiple unknowns pyp(n) when n runs trough from
1 up to a given n. As ap = 1 = yo; hence defining pm(0) = 1 (which is
usually the case), Eq. (10) is obviously rewritten as

Ay =q,

where ¥ = (Y0, 91, -, ¥n)ty @ = (00,01, ...,0,)", and A is the (n + 1) X
(n + 1) invertible matrix:

1 0 0 0 00

L3 1 0 O O 0

S92 S 1 0 0 0

A= . S92 S1 1 00
10

Sn' Sn—1 Sn-2 .o 31 1

Thus, one obtains each py(j) for j = 1,2,...,n, as solutions of this
system of linear equations:

-1

Yo 1 0 0 0 - 00 [7))
Y1 S 1 0 0 0 0 aq
Y2 S92 S1 1 0 0 0 (6%
(20) = . So 51 1 0 0)
10
Yn . Sp Sp-1 Sp-2 * - 81 1 Qn

where the s; and the o; = (™*/"") are uniquely determined by the given
M. (cf. Eq. (16)). In particular, one obtains Eq. (18) by equating the
(n + 1) rows of both sides, where y; is pm(3) for each 1 = 0,1,...,n
This should be the end of the proof, if one could recognize that the
polynomials in g, 81, ..., S, one obtains from the above (n+ 1) x (n+1)
inverted matrix can be expressed as those with (—1)* in Eq. (18).

If one cannot see why the summands in Eq. (18) are alternating in
sign, then one may have to look at it a little bit more carefully from a
different angle and it goes as follows, where one writes y, = dim; B as
before and @; = @;(se, 1, - , 5;) only for convenience.

284 Sun T. Soh

This is in fact a second proof of the theorem. If n = 1, Eq. (10) says
that g1 = (7) = s1 = (=1)°Qo(™™!) + (-1)'Qu(™{7)™") with Qo = 1
and (; = sy, since sop = 1 and yp = 1. Then with the hypothesis that
Yn = Doool(—1)'Q; (m+(<1'l‘_"1.’))"1)holds for n with Qy = 1foralln <n+1,
one is left to show that the equality

Yni1 = ni(‘l)i@‘ (m +((:i11))——:) 1)

i=0

holds for n + 1. Then one finishes the second proof the theorem by
induction on n. But, one easily sees again from Eq. (10) that

Yn+1

_ (m+(n+1)—1
N (n+1)

) = 81Yn = 82Yn-1 — *** — SpY1 — Sp+1

m+(n+1)-1

- (") Eeea ("0)

— S (—1)isQ; <m +((:: 11)) L 1)

—(52Q0 — 5:Q1) (m +((:__ ((:__ 11))))_— z‘i) 1)

m—1
—3n+1Qo(0 >,

where one puts @y = 1. Thus rewriting this one obtains

Graded partition furictions 245

= (T

—leo(m+n 1)

m+(n 1)-1

—(51Q2 — 52G1 + SsQn)((n—2)

+(51Q3 — 52Q2 + 53Q1 — 54Qo) (m +((: ?i) -

)
m+(n=2)~- 1)
)

+("‘1)n+1(31Qn - San—l + 83Qn—g — -+ (fl)@sn.piQo)

: setona(" T

where each Qg(j) = 1 for j = 1,2, ,n, and this finishes the proof. OO

From the second proof of the theorem, one obtains the ﬁollowmg coml‘
laries of which the first tells us the polynomials in Eq. (18) are recursively

related to the previous ones and the second tells what they actually look
hke :

COROLLARY 1. The Qi(so, $1,- - ,5:) are determined recursively by

. n~1 .
(21) Qn(SO) Sty sn) = Z(—l)j'sijQn—l—-j(sO; Sty Sﬁ—l-j)7
. o i
n = 1,2,3,--

where Qg = 1 by definition.

286 Sun T. Soh

EXAMPLE 3. One can easily compute the polynomial Q;(so, s1,- - , 8;)
using this formula. For example, when n = 5, one gets

Q =1
Q1 = s)
Q2 = —8 + S
22
() Qg = 83— 28281 + S?
Qs =. —84+ 2535 + s2 — 3sp8% + s
Qs = 85— 25451 — 28353 + 38352 + 3525 — 45985 + 5%

COROLLARY 2. 1. The number of alternating terms in each poly-

nomial Q;(sg, 81, - , 8;) Is equal to the value of p(i) = the classical
unrestricted partition function.

2. Each Q;(so,51, " , ;) is homogeneous of total degree i with re-
spect to a grading on the sy, sy, -+ , s; defined by deg(s;) = ¢ for
each 1.

3. Each Q;i(so,s1, - , ;) is monic in s; with Qo(sp) = so = 1 and

Q1(so, 51) = s1 = the number of non-constant polynomial factors
of the form 1+t + %+ - - - + t¥@-1 shown up in the right side of
Eq. (16).

Again one notes that these polynomials in sg,-- - , s, are not depen-
dent on m, but only dependent on n, and since they are theoretically
(but perhaps not practically) determined from the (n + 1)* row of the
inverted matrix in Eq. (20), it is well qualified to call Eq. (18) an “ex-
act” algebraic formula for graded partition functions. In particular,
if one compares Eq. (19) with the non-algebraically exact formula, Eq.
(3), for the case of the classical unrestricted partition function p(n), one
may easily recognize the obvious reason why Eq. (19) should be called
an exact algebraic formula. Its first corollary then tells us that one has
a recursive formula for the polynomials Q;(sp, s1,- -+ , Si)-

REMARK 4. Now one learned from the above proof how to obtain
polynomials Q;(s, s1,- - - , ;). When the actual computation is involved,
since Eq. (10) above is equivalently expressed for n unknowns y;,- - , ¥y,

Graded partition functions 287

as a system of linear equations

i

aq Y1+ So+ Yo S1
2] = Y-Sot+yi-S1+Yo- S

(23)

Qpn1 = Yn-1°Sot+Yn-2 81+ -+Ys-Sp1
Gp = Yn-SetYn-1-S1t- -+ Y1-Sn-1 T Yo Sn

where o; = (m‘:.i_l) for each 7 with yy = 1, and sy = 1, the process of solv-
ing this system to get the desired solution (pm(1), pm(2),- -+ , pm(n)) of
these n diophantine equations for n unknowns y; successively for already
given unknown parameters Sg, S1,:-* ,Sp, and unknown oq,--- ,Qp, in
turn produces each polynomial Q;(so, $1,- - , $;) in a simultaneous man-
ner.

WARNING. One should note that Eq. (23) is not a linear recurrence
of finite order.

One also notes that since the role of the y; and that of the s; are
exactly the same in it, Eq. (23) can be equally used to compute each
s; from the o; recursively if one knows a priori the value py(%) for each
1=1,---,n for given positive integers n and m.

REMARK 5. Eq. (23) also tells us the following. One starts with
pm(0) = ag, where ap = (™{7!) = 1; then one extends this partial
* solution (pMm(0)) to the solution (pm(0), pm(1)) of the first equation of
Eq. (23); then one extends this partial solution to the next solution
(pm(0), pm(1), pMm(2)) of the second equation in Eq. (23); and so on,
until one obtains the unique total solution (pam(0), pm(1), -+ ,pm(n)) of
the n-th equation in Eq. (23).

Therefore, one sees that the number py(n) of distinct solutions of a
diophantine equation

n = v(1)d(1) + v(2)d(2) + - - - + v(m)d(m),

where v(i) > 0 for each 1, is again the solution of the n-th diophantine
equation in Eq. (23); hence the word “diophantine” in this paper has a
double meaning.

288 Sun T. Soh

4. Built-in error-checking ability of the formula in
theorem 6

As was mentioned in Section 1, P. A. MacMahon used the following
recursive formula in Eq. (1) to compute the values of p(n) up to n = 200,

p(n) = p(n—1)+p(n—2)—p(n—5)—p(n—T)+++(~1)"'p(n—n;)+--

where the sum is taken for up to the largest j such that n —n; > 0 and
the n; = j(37 £ 1)/2 are the so-called “pentagonal numbers”.

But the problem with computation of the values of p(n) based on The-
orem 1 is that one may not be quite sure whether or not the value for p(n)
one obtains from this recursive formula is free of computational errors,
including “soft-errors”, which may be accidentally introduced during
computation in an undetectable manner, unless one knows in advance
the correct values of p(n). In particular, obtaining such a knowledge is
obviously impossible when the values of p(n) are ever first computed for
large numbers n. To make it worse, once a computational error has been
introduced to the value of p(n), the values of p(m), if computed based on
this recursive formula of Euler, for m > n are all going to be wrong. This
is not a silly worry, since I personally had such a bad experience at least
one time. Personally, I do not know by what means mathematicians at
around 1915 believed the results were absolutely free of computational
errors when P.A. MacMahon first computed the value of

P(200) = 3,972, 999, 029, 388

based on Theorem 1. Of course, one can utilize Rademacher’s formula
to verify the results, but as I indicated before in the previous Section,
this approach introduces another kinds of difficulties in an actual imple-
mentation of it.

An important feature or an extra ordinary strength of my construction
of an exact algebraic formula made in Section 3 in general is that when
one develops an algorithm based on Eq. (23), the algorithm itself has a
built-in ability to check correctness of the value of py(n) at each step,
and of which the reason goes as follows. Please note that this feature is
due to the geometric idea of the graded structure I put into the whole
construction process, as is explained in Remark 5.

Graded partition functions 289

Suppose one has computed the lattice point (pv(0), pm(1), -+ -, pm(n))
for some n, each pm(j) is determined by the s; and the o; each of which
is uniquely determined by the given m and n. To check the correctness of
the pm(j) for j = 1,2, - - , n, one simply adds, for instance, the following
integer

max(n+ 1,1+ 1Ig;'gfjd(z)))

(in fact, you can add any positive integer strictly bigger than n) to the
old set M to obtain a new set M; then computes the s; and the ¢; again
with respect to this new M. With these numbers, one then computes
the lattice point (pm(0), pm(1), - - , pm(n)) again using Eq. (23). If the
result of this computation is not the same as the previous one, it simply
means that some computational error has been introduced during the
computation of these numbers.

The reason may be easily explained from a geometric point of view.
To make the explanation very clear, one only considers the following sit-
uation. Assuming that the lattice point (pm(0), pm(1),- - -, pm(n — 1))
is correctly computed, one considers the following system of two lin-
ear equations for unknown y, and v, with definitely different positive
integer slopes s; , and Sy m41:

Anm = Yn+ S1,mYn—1 + Cn,m
(24) ,
Onm+l = Yn+ Sime1ln-1+ Cn,m+l

where the C,, , and C,, ;1 are well-determined integers from the lattice
point (pm(0), -+, pm(n — 2)), and the s;,, and the s;,,.1, Tespectively.
Then since the lattice point (pm(n — 1), pys(n)) is defined as the inter-
section of these two lines by Eq. (10) and since one already knows the
exact value of pp(n — 1) by assumption, the two computations for py(n)
from the two different M, the old one and the new one, should yield the
same answer for both, unless some computation errors have been intro-
duced during computation of pp(n) from either the old M or the new
M. If this happens, one should stop computation and try to find out why
it fails to compute the correct value of pp(n), although it successfully
computes the exact values for those py(j) for j =1,2,--- ,n—1.

The worst situation would be the case when one gets wrong y,,’s from
the first and the second equations, respectively, but it just happened
that these two wrong solutions are accidentally the same. Fortunately,
the possibility of having such a worst situation is going to be extremely
rare for sufficiently large numbers n. In fact, one easily convinces oneself

290 Sun T. Soh

that the more gets n bigger, the less chance gets one of having the same
wrong solution for both equations, since the number of digits needed to
represent the number py(n) increases very rapidly as » increases.

5. Applications

As mentioned before, once a natural number n is given to us for
which pp(n) is to be computed, only those elements d of M which are
less than or equal to n are used to represent the number n as a finite
sum of positive integers.

5.1. Graded partition functions

Here is a general situation. Since there has been no formula like Eq.
(23) for a general multiset M, one may expect that there should be lots
of situations for which this formula could be applied. Example 4 below
is a simple one, but Example 5 below shows some other type of them.

EXAMPLE 4. Let M = {1,¢4, lbiue, Lgreen, 2, 3} be a finite multiset. One
wants to find the number pyv(n) of partitions of n where the 1’s have
different colors as is indicated as indices. For this, one first computes
the arithmetic invariant, the s;, as follows:

1-1-1-(14-8) - (1+t+#2) = 1+2t+262+83 .

Thus, s = 1,51 = 2,53 = 2, 83 = 1, and 84 = s5 = - - - = 0. One notes
that
1.1:1:2.3=14+2+2+4+1=s5p+ 5+ 32+ s3.

Then by Eq. (23) above with m = 5, one obtains withn =1, 5 = y;+2,
where a5 = (5+}_1) =5, hencey; = 3; withn =2, 15 =y +3-2+1-2,
where ap5 = (**27') = 15, hence yp = 7; withn =3, 35 =y3 + 7- 2 +
3-2+41-1, where azs = (**3') = 35, hence y; = 14; withn =4, 70 =
Ys+14-2+7-243-141-0, where ay s = (5+3_1) = 70, hence y4 = 25; with
n=>5, 126 = ys+25-24+14.2+7-143-0+1-0, where a5 5 = (**2>71) = 126,
hence ys5 = 41. Thus, pm(1) = 3, pm(2) = 7, pm(3) = 14, pm(4) = 25,
and pp(5) = 41, ete.

Based on the explanation in Section 4, one easily check whether or
not these computations are correct: Let us add, say 6 = 5 + 1, which

is strictly bigger than n = 5, to the old set M so that the new M =

Graded partition functions 201

{1reds Lotues Lgreen, 2,3,6) and compute the s; and the o;. The expansion
of the following polynomial in ¢

1-1:1-(QQ+t) - (T4t +8) - A+t + 2+ + 1+ 1°)

gives 59 = 1,81 = 3,80 = 5,83 = 6 = 54 = s5. Thus, with m = 6, one
obtains withn =1, a6 = (6+i‘1) =6, 6 = y; + 3, hence y, = 3; with
n=2 ay = (¥*27") =21, 21 = y, + 3-3 + 5, hence y, = 7; with
n=3, ass=(*3"") =56, 56 = y3+3-7-+5-3+6, hence y; = 14; with
n=4, agg = (*]7") = 126, 126 = y,+3-14+5-7+6-3+6; hence y, = 25;
withn =5, asg = (**77") =252, 252 = y5+3-25+5-14+6-7+6-3+6;
hence ys = 41..Since one obtains the same value for py(j) as before, for
j = 1,2,3,4,5, this time with a new M, one concludes by Section 4
that no computational error has been introduced during computation of
these values and consequently the results are all correct.

EXAMPLE 5. One notes that, for instance, the number of different
ways of representing a given natural number n as a sum of squares of
others is equal to pp(n) with M consisting of those numbers of which
squares are less than or equal to n. And all kinds of similar counting-
related questions may be answered by my formula in 23 for py(n) for
appropriate choices of M. It is left to the reader to have his own examples
in this direction.

5.2. The classical unrestricted partition function p(n)

Here is a very special but well-known situation with M = {1, 2, 3, 4,
-+ }, where all numbers are required to have the same color, say, black.
Although it still remains the possibility of having some computational
errors in the values of the p(n), it is nowadays not a big deal to compute
the values of p(n) based on Euler’s formula, Eq. (1), for quite large
integers m, thanks to rapid development in technology in recent three
decades. In my later paper, I will discuss in detail how one can verify
correctness of the values of p(n) computed based on Euler’s formula in
a purely recursive manner.

On the other hand, this is the case which may be, in particular,
thought as a worst situation in computation of py(n) using Eq. (23)
when n gets very big, since the arithmetic invariants s; become super big
as n gets very big. This suggests there should be a further development of
the theory under consideration. For more development in this direction,
the reader may look at the last section of this paper.

292 Sun T. Soh

For comparison purpose with the result of Example 4, one now con-
siders the following easy example.

EXAMPLE 6. Let M =N — {0} = {1,2,---} and one want to com-
pute the value of the classical partition function p(n) for n up to, say 3
first. Since every element of M is distinct, pp(n) = p(n) this time. As
no numbers bigger than 3 are used to represent the number 3, we may
safely assume that M = {1, 2, 3}; hence m = 3. Thus

1-(14¢8) - (1+t+1t%)

gives 59 = 1,81 = 2,8, = 2,83 = 1, which happens to be the same as
the first case of the previous Example. By Eq. (23) above with m = 3,
one obtains with n = 1, a;3 = (3"“}_1) =3, 3=y +2, hence y; = 1,
withn =2, ag3 = (*27) =6, 6 = y; +2- 1+ 2, hence 3, = 2; with
n=3, as3=(*37") =10, 10=y3+2-2+2-1+1, hence y; = 3.

Now, in order to compute pn(4), one adds the number 4 to the pre-
vious M so that the new M = {1,2,3,4} and this time m = 4. With
these, one expands

1-(1+8)- (A +t+tD) - (1 +t+t24+13)

to obtain s = 1,5, = 3,5, = 5,53 = 6,54 = 5. By Eq. (23) above with
m = 4, one obtains with n = 1, oy = (**]7") =4, 4 = y; + 3, hence
y1 =L withn =2,094 = (*37') =10, 10 =5 +3-1+5, hence g, = 2;

withn =3, ass= (*"37") =20, 20 = y3+3-24+5-1+6, hence y; = 3;
: 3

withn =4, aga= (1) =35 35=94+3-3+5-2+6-1+5, hence
ys = 5. Thus by Section 4, one concludes that no computational error
has been introduced during computation of pyp(n) for n up to n = 3.
In order to check the correctness of pp(4) with M ={1,2, 3,4}, one
simply adds 5 to the second M to obtain a new M ={1,2,3,4,5} and

hence this time m = 5; with these one expands
1-(148) - (I4+t+88) - 1+t + 2+) A+t + 2+ 85+ 1Y)

to obtain sy = 1,51 = 4,83 = 9,84 = 15,85 = 20,85 = 22. Thus,
Qa5 = (5+j_1) = 70. Then by Eq. (24) above one obtains a system of

linear equations in two unknowns with different positive integer slopes
3 and 4:

3 = Yy+3-y3+5-24+6-1+5
0 = ye+4-y3+9-2415.1420 °

Graded partition functions 293

where one already knows that y; = 1,y = 2, and y3 = 3. By the previous
computation, one knows that (3, 5) is a solution of the first equation of
this system of which correctness is now in question. Then Section 4 tells
us that if (3,5) does not satisfy the second equation of this system, the
previously computed value y4 = 5 is not correct. But in our situation,
(3,5) clearly satisfies the second equation, so that one concludes that
the computation of pm(4) = 5 with M ={1, 2, 3,4} is correct.
Repeating the above process, one can not only compute the values of
p(n) but also checks correctness of its results up to n, which can be done
without spending any other extra time and labor, based on Section 4.

5.3. Reverse applications

From these examples the reader should recognize that the only limit
to the computation of pp(n) based on my formula in Eq. (23) is com-
puter’s hardware and software ability to compute the first (n + 1) arith-
metic invariants so,sy,--- ,$, of the set M = {1,2,-.- ,n} for a given
natural number n. Unfortunately, the reader may easily recognize by
doing some computational experiments that this direction is not quite
good from computational point of view, since computation of the first
n+1 coefficients s; of the polynomial is not that easy as n gets big, since
direct expansion of the involved polynomial

1-(1+2)-Q+z+2Y) ... (l+z+2>+-- -+ 2"

requires time efficiency of O(n®) but with a very bad space efficiency.
One has an easy

LEMMA 3. For each ¢, the i-th coefficient s; of the above polynomial
is equal to the number of elements of the set

{izi=v+m+ -+, 0<y <i}

The proof of this lemma can be easily obtained by counting those
terms in the polynomial above contributing to each i-th coefficient s; of
the polynomial.

In my later paper [15], a new elementary method of constructing a
complete formula for a single s; for 0 < ¢ < n, is presented. The method
presented there is completely different from the well-known one which
gives the same formula for s; as my construction. One may apply this
complete formula n+1 times separately to compute each s; for 0 < i < n,

2904 Sun T. Soh

but since it is not recursive it takes a lot of time to compute all of them.

Another direction of application of Eq. (23) is the following one. Very
recently the author has learned that R. P. Stanley proved

THEOREM 7. Thei-th coefficient s; (which I call arithmetic invariant)
of the above polynomial is equal to the number of permutations 7 in the
group S, of n X n permutation matrices having precisely i inversions.

For the proof of the theorem, one may refer to Corollary 1.3.10 of
11).

On the other hand, the author of this paper proved (originally in [13]),
independently and without knowing the Stanley’s result, Theorem 5 of
which a special version, the following corollary, is related to the Stanley’s
result, with a particular M = {1,2,3,--- ,n}:

COROLLARY 3. For each i, the i-th coefficient s; of the above poly-
nomial is equal to the number of homogeneous basis elements of degree
i of a basis of the free module A = k[X1, Xs,-- - , X,| of finite rank, n!,
over its subring B = k|[fi, fo, -+ , fa), where A is the polynomial ring in
n variables over an algebraically closed field k and the f; are any homo-
geneous polynomials of positive degree © for each i such that the origin
is their only common zero.

In particular, if one replaces each f, in the Corollary with the elemen-
tary symmetric polynomial

oi= > XmXm o Xm,

mp<meo<--<my

one obtains a result upon which the above Stanley’s result holds. For
more about this, the reader may refer to Theorem 2.7.6 and around it
in pp. 72-73 of [12]. What is missing in Stanley’s result is about how to
compute all the coefficients s; of the above polynomial.

It is in the proof of this theorem that the author discovered an-
other new means (both complete (Eq. (18) and recursive (Eq. (23))
to compute the values of the partition function p(n) over a particular
M ={1,2,--- ,n}. As is slightly explained in the Appendix below, re-
cursive computation of values of p(n) utilizing Eq. (23) cannot be as
efficient as the well-known Euler’s recursive formula, because computa-
tion of the needed coefficients s; for 0 < ¢ < n of the above polynomial

Graded partition functions 295

1s not that easy. But, one should note that one can compute the coeffi-
cients s; for 0 < ¢ < n, which appear in Stanley’s theorem (Theorem 7),
in a recursive manner, utilizing first

1. Euler’s recursive formula for p(n) and then
2. my formula in Eq. (23) in a reverse direction successively.

I call this direction of application of my formula, the reverse appli-
cation of it. If one intends to examine the data pattern of the first n+1
of the s;, then this way of recursive computation of them is very effi-
cient. Since Euler’s recursive formula only requires O (n%?) operations
and my formula requires O(n?) operations, this provides an efficient
algorithm with a polynomial complexity O(rn?) to compute all those s;
for 0 < i < n, showing up in the above Stanley’s result. I am personally
wondering if a more efficient algorithm for them (i.e., not just a single
one) is even known to us.

The reader may try to compute those s;, for instance, for 0 <i < n
when n = 5000, with his computer (in my case, a Pentium PC with
16 Mbyte of main memory), utilizing any algorithms for it available to
him, and compare their efficiency with computation based on the above
reverse application of my recursive formula in Eq. (23), to see a big
difference both in space.and time efficiency between them.

The obvious problem with the above reverse application is that one
cannot compute recursively, applying the above method, any of those s;
for which 7 > n, since Euler’s formula is only available up to n, whereas
one has to compute not only the first n+ 1 but all the coefficients of the
above polynomial. To resolve this problem, one has to consider how one
can efficiently compute all the values of the partition function py(j) of
which components all belongs to the fized set M = {1,2,--- ,n}. In my
later paper [15] based on {14], which is a natural generalization of this
paper, this line of thought is very successfully examined from a more
general point of view.

6. Problems

Finally, I would like to raise two problems related to graded partition
functions py(n) with M finite or not.

296 Sun T. Soh

PrOBLEM 1. Establish an exact non-algebraic formula for pm(n),
like the one, Eq. (3), for the classical p(n).

PROBLEM 2. Establish another exact algebraic formula for pm(n)
which is different from the one in Eq. (18).

The generating function of py(n) for the graded partition function
is given by Eq. (4). For obvious reasons, answers to Problems 1 and
2 are important as it has been in the case of the classical unrestricted
partition function p(n).

7. Appendix (announcement of further results)

It is explained in this paper how one can relate a given graded par-
tition function of which components belong to a multiset with the di-
mensions of subspaces of certain vector spaces, so that the nature of
this article is rather theoretic. In this direction, one should note that
my formulas Eq. (18) and Eq. (23) are suitable for the graded parti-
tion function over any multiset, and the classical unrestricted partition
function p(n) is just one of them. The built-in error-checking ability of
my formula, Eq. (23), is theoretically quite remarkable since it is ques-
tionable if any other formulas in mathematics do have such a feature at
all. Such an ability will be practically important if an algorithm based
on my formula, Eq. (23), would turn out to be quite efficient (which
is unfortunately not the case, though, when n gets big, for an obvious
reason).

In the case of the classical unrestricted partition function p(n), as
Prof. George E. Andrews pointed out after reading out the first preprint
of this paper, the efficiency of an algorithm based on the recursive
formula, Eq. (23), cannot be as good as the one based on Euler’s formula,
Eq. (1), since expansion of the polynomial to obtain the arithmetic
invariants s; becomes a quite difficult job as n gets big.

In general, the efficiency question is less important when one origi-
nally establishes a formula like mine in Eq. (23). Nevertheless, once
established, such a concern is very important for practical implemen-
tation of it, because the time efficiency, which is a main issue of the
complexity theory, is an intrinsic property of a formula in general. This

Graded partition functions 297

way of thinking is clearly a right motivation for a further investigation,
which Prof. George E. Andrews also strongly suggested, to work on ef-
ficiency matters of my formula in Eq. (23). The result, [14], is a natural
generalization of this paper from this point of view.

In my next paper [14], it is presented how one can develop relative
formulas for a graded partition function with respect to another such
one, which are generalization of the formulas in this paper, and the
space and time efficiency of these generalized formulas are discussed
especially in the case of the classical unrestricted partition function p(n).
In particular, it is also shown in there that the “direct enumeration” of
the values of p(n) from its generating function is nothing but a badly
deformed version of my generalized formula with an unwisely chosen
control parameter (meaning that it takes unnecessarily too much time
with that number as a parameter). This will show that a version of
my quasi-recursive formulas in [14] is an efficient generalization of the
well-known method of direct enumeration of its generating function (Cf.
Example 1). It is also fully explained in that paper how one can use
the built-in error checking and/or correcting ability of my formulas of
relative version.

It turned out that this generalized version is quite efficient. For in-
stance, it took about 12.2 minutes to compute the values of p(n) for
0 < n < 5001, using Euler’s formula Eq. (1). Then I was, using my
formula which I decided to call quasi-recursive, able to check correctness
of the value of the single p(5001) only within 13.2 minutes, with a very
reasonable assumption that the correct values of p(n), for 0 <n < [Q%'Ll],
are given to us. Then by the nature of Euler’s formula, this means that
all the values of p(n) for n up to 5001 are all correct. On the other
hand, the method of “direct enumeration” as in Example 1 took about
80 minutes to compute the values of p(n) for 0 < n < 5001.

Computational results such as above suggest, especially among oth-
ers, that it is not wise, unless n is very small, to use the method of
“direct enumeration” of its generating function for a graded partition
function pp(n) for the purpose of error-checking and correction, when
one recursively computes the values of py(n). My formula in [14], called
quasi-recursive, should provide a much better means for this purpose.
One should note that unless the multiset M is very special, for instance,
M = {1,2,3,---} or {1,2,---,n}, it is not quite possible to establish

298 Sun T. Soh

a complete, or exact formula for py(n) for a single input n, which is
different from my formula in Eq. (18).

The above computational results were obtained under the following
hardware and software limitations: a Computer Algebra System, a per-
sonal REDUCE 3.5, under Microsoft Windows 3.1 on my Pentium PC
(a Gateway product of 1993) running at 60 MHz with 16 Mbyte of to-
tal main memory (with “memory size” 12.5 Mbyte and “stack size” 1
Mbyte, chosen at REDUCE’s beginning prompt).

References

[1] G. E. Andrews, Number Theory, Sunders Co., 1975, pp. 149-198.

(2] , The Theory of Partitions, Addison-Wesley, Reading, 2nd printing, 1981.

[3] B. C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, 1989, pp. 305

[4] W. Fulton and J. Harris, Representation Theory, A First Course, GTM 129,
Springer-Verlag, 1991.

[5] E. Grosswald, Topics from the Theory of Numbers, Birkhauser, 1984, pp. 109-
140.

[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th
Ed., Oxford, 1983, pp. 272-295.

[7] L. N. Herstein, Topics in Algebra, 2nd Ed., 1975, pp. 88-90.

[8] Math. Soc. of Japan, Encyclopedic Dictionary of Mathematics (English), 2nd
Ed., 1987, Vol. 2, pp.1230-1232.

[9] I. Niven et al., An Introduction to the Theory of Numbers, 5th Ed., John Wiley
& Sons, 1991, pp. 446-471.

[10] P. Shiu, Computations of the partition function, The Mathematical Gazette, Vol.
81, J. Math. Assoc., UK., 1997, No. 490, pp. 45-52.

(11] R. P. Stanley, Enumerative Combinatorics, vol. I. Wadsworth & Brooks/Cole,
Monterey, California, 1986.

[12] B. Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Sym-
bolic Computation, Springer-Verlag, 1993.

(13] Sun T. Soh, On a Complete Intersection, RIM-GARC Preprint Series 95-15,
Research Institute of Math., Global Analysis Research Center, Dept. of Math.,
Seoul National Univ., 1995.

, (Quasi-) Recursive Formulas for Graded Partition Functions, preprint

, Efficient Formulas for the Coefficients of the Gaussian Polynomials [Z],

preprint

(14]
[15]

Department of Mathematics
MyonglJi University
Yongln 449-728, Korea

