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COINCIDENCE OF MAPS BETWEEN SURFACES

. DACIBERG L. GONGALVES

ABSTRACT. We will consider f,g: S; = S a pair of maps between
two orientable compact surfaces. The purpose of this paper is to
decide when the pair can be deformed to a pair (f’,g’) such that
#coin(f’,9') = N(f,g), the Nielsen coincidence number of (f,g).
We derive an equivalent algebraic condition and show that if we
compose (f,g) with certain maps h : § — S; then the answer is
positive. Finally, we analyze the case of roots, i.e., g is the constant
map. When S, is the torus we give a new proof of the converse of
the Lefschetz theorem for coincidence.

0. Introduction

The purpose of this work is to study the Wecken problem for coinci-
dence. Namely, given f,g : S; — S;, two continuous maps, when does
it exist f' homotopic to f, ¢’ homotopic to g such that #coin(f',g') =
N(f, g) (where # stands for cardinality and coin(f, g) = {z € Si|f(z) =
g(z)}). This question, in the case of fixed points, is known to have a
positive answer for some pairs (id, f) and negative for others. See, for
example, [11] and [12]. Let us say that (f, g) has the Wecken property
if the question above has a positive answer. In section 1, we derive alge-
braic conditions, in terms of the Braid groups, for a pair (f, g) to have
the Wecken property. This is the Fundamental Lemma 1.2. We also
prove Theorem 1.3 which says: Given any pair of maps (f,g) : S; = Sh
between two surfaces, there is an integer n such that (f © iy, 9 © pin)
has the Wecken property. Also N(f o pin, g0 min) = N(f,g), for any
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integer n. Here p;, looks like a projection. In section 2 we specialize to
the case where the second space is the torus T. We reduce the problem
to the case where one of the maps is the constant map. Then we write
the algebraic equations which are equivalent to the geometric problem.
These are Propositions 2.1 and 2.3, respectively. Finally we give a proof
of the converse to the Lefschetz theorem for coincidence of maps on the
torus. This is Theorem 2.8 which says: Given f,g : S — T such that
N(f,g) = 0 then (f,g) can be deformed to be a pair (f',g") which is
coincidence free. This theorem relies on the fact that amap h: S — T,
which has degree zero, can be deformed to a map which is not surjective.
This result is known, but we give a new proof, that we expect to have
its own interest.

We would like to thank Professor E. Fadell for many helpful con-
versations, for his interesting questions about the subject and for his
encouragement. Finally, we would like to thank Professor R. F. Brown
for pointing out the overlapping of this work with others and his sug-
gestions, which improved the exposition of this work.

1. Algebraic version of the Wecken property and further re-
sults

We will start with a Fundamental Lemma, which is a natural gener-
alization of Theorem 1.1 of {13] for coincidence. We would like to thank
the referee for point out the reference [10]. The Fundamental Lemma
here is similar to Lemma 1.2 together with Lemma 2.1 in [10].

Let S, S), be the orientable compact surfaces of genus I, h respectively,
and ey, ..., ey a fixed canonical basis of 71(S}, zo). Suppose we are given
two maps f,g : S; = Sy, where we have fy(e;) = wi, gu(e;)) = v, i =
1,2,...,2l, and w;,v; belong to m(Sk, y1), 71(Sk, y2), respectively, and
f (o) = y1 # y2 = g(xo). Following [6] section 4, we have two subgroups
of m1(Sh X Sh ~ A, (y1,%2)) generated by (p1,1, P21, - -+ Por—1,1, P2n1),
(P12 P22, - - -y P2n-1,2, Pan2), which we denote by Fy, F, respectively. Let
Wi, V; be elements of F, F, which project over w;, v;, respectively, under
the map 7 (Sp % Sp — A, (y1,¥2)) = 71(Sh X Sk, (y1,%2)) induced by the
inclusion. Let N(f,g9) = and ki,... ,k, be the indices of the essential
Nielsen classes. Also, let {1,ay,...,& } be a set of representatives of the
Reidemeister classes of (f, g), which corresponds to the essential Nielsen
classes. Let the class defined by «; have index k; and the class defined
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by 1 have index k;. (For the definition of the local coincidence index,
see e.g. [20]). We choose a base point in the class defined by 1.

DEFINITION 1.1. A pair (f, g) has the Wecken property if we can find
f' homotopic to f, ¢’ homotopic to g such that #coin(f’, ¢') = N({, 9).

Now let F = m(Sh — y1,42), N = Ker(® : F — 7(Sh,12)), B =
10,0212 Pi), @(@) = @ and B, = aBa™" as in [6].

FUNDAMENTAL LEMMA 1.2. The pair (f, g) satisfies the Wecken prop-
erty if and only if

(a) If N(f,g) = O then we can find a solution §; € N, 1 =1,2,...,2]
of the equation

l
H[92i—1W2i~—1V2i—-11 G2uWoi Vo] = 1 .
=1
(b) If N(f,g) = r # 0 and ka, ...,k are the indices of the Nielsen
classes, then we can find a solution §; € N, i = 1,...,2l of the
equation

!
H[O%——IW%—lV%—l:62iW2iV2i] =B BR...BY

i=1

for some set {1, &z, ... , &} of representatives of the correspondents
essential Nielsen classes.

Proof. The case (a) can be proved in the same way as case (b) and
it is simpler. So we will show only case (b). Suppose (f,g) satisfies
the Wecken property. Let f' ~ f, ¢’ ~ g, where ~ means homotopic,
such that #coin(f', ¢') = N(f,g). Denote by z,,...,z, the points of
coin(f’, ¢'). Around each point we draw a small circle and connect them
by a path. See figure I.

Using the notation of figure I the small circle around the point z; is
Aj x B7 !, The base point is zy which belongs to the circle around the
first point. Two consecutive circles are connected by a path ;. Call D;

the closed disk which boundary the circle around z; and [o),- its interior.
Since (f’, ¢') have no coincidence in S, —U;zl Io)j, this means that (f’, ¢')
is in fact a map (f',¢’) : S; — U;=1 1°)j-> Sp X Sp — A. But the loop
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k2 AY
Y
B, Pe
Figure I.

£= nﬁzl[pgi_l, pai) [T, & is trivial in S; — U;zl lo)j where &; is the class
of the loop

-1, -1 -1 -1 -1
AL* YL kR Aoy kg ok Bk A kY kA Ry kAL

So (f x g)(&) is 1 in m (S, x S, — A). Let ¢; be the path A; x 7, *
<+ =% Aj_1 * %1 which goes from the base point zy to the base point of
the circle around z;. Since the coincidence index of z; is k; we have that
(f'(pi* Xi % BT % o7 Y), g (s % i % B * p;1)), as a braid, represents
the class of a;B*a; ! = B, where &; ~ ¢(3;)f(%:)~! and 3; is just ¢;
followed by the radius from the end of ¢; to z;. Also (f'(p;),d'(0:)) as
a braid is 6;W;V; for some 6; € N. Since (f x g)4(€) = 1, the equation
given in part (b) follows.

Now suppose that we have a solution for the equation given in (b).
Let us define two functions f,g:S) — Sj.

Using the surface and the notation in figure I, define f(z) = yp for
T € DUy UDyU---U+,_3UD,, where y is a chosen point of S,.
Define g on the boundary of D; such that the image is a small circle
around yo and g has degree k;. Extend g to D; radially and define g on
the path +; in such way that g($) represents the element o; given by
the equation. Finally on the edges v, p; define f and g such that (f(e;),
g(e;)) represent the words w;, v; respectively. There is no problem to
define f, g in these edges with no coincidences. But the given equation
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I-handles a-handles

¢ = constant map

Figure II.

is precisely the algebraic condition to extend the map ¢ = (f, g) over
the 2-skeleton. See theorem 4.3.1 of [1]. '
If & is the extension and p; : S x S, — A — Sy is the projection on
the i-th coordinate, then the maps f; = p; © @, g1 = p2 © § are certainly
homotopic to f, g, respectively, and we get the result. a

This type of equation is basically the same one which appears in [13],
Theorem 1.1, where the fixed point case is studied.

Let S; be the orientable surface of genus I. Define p;p, : Si4n — S as
the pinching map which takes the last n-handles to a point p, while the
complement is mapped almost like the identity (see figure II).

Now we will state the main result of this section. For its proof we
need Proposition 1.4.

THEOREM 1.3. Given any pair of maps (f,g) : Si = S, among two
surfaces, there is an integer n such that (f o pin, g0 D) has the Wecken
property. Also N(f o pin, g0 pia) = N(f,g) for any integer n.
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Now let us consider the abelianized obstruction, (see [6]), to lift a
map to the 2-skeleton. If we consider the diagram

Spx Sp—A

!

(f,g):Sl — ShXSh

by [6] the abelianized obstruction to lift (f,g) from the 1-skeleton to
the 2-skeleton is an element of H%(S;, Z[r]), where 7 = m;(Sy). This
cohomology class can be represented by a 2-cocycle of the form > n;[ey]
where n; is the index of a Nielsen class and [o] is the corresponding
Reidemeister class.

PROPOSITION 1.4. The equations given in parts (a) and (b) of the
Fundamental Lemma 1.2, when looked in N,;, the abelianized of N,
admits a solution.

Proof. By classical obstruction theory, if a 2-cocycle represents an
obstruction class which is a two dimensional cohomology class, then
we can deform the function over the 1-skeleton such that the cocycle
defined from this new function is precisely the given one. This new
function together with the original one provide us with 6y, ... , 6y which
is a solution for the equations in Ng. O

REMARK. This can be done directly by working with the isomorphism
Nab ~ Z{ﬂ']

Proof of Theorem 1.3. By proposition 1.4 if we are given a set of rep-
resentatives {1, as, ..., @} of the Reidemeister classes which correspond
to the essential Nielsen classes, we can find 6q,... , 8y such that
W = B.™---B. B ™ [0,W1V,0,W)Vy] - - - [0 Wai—1 Va1, 0 War Val]

€ [N,N]

or this element is zero in Ng. So we have fy41,... ,0540, € N such
that

n
W = H[92l+2n——2j+27 921+2n—2j+1] or

i=1
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+n
H[921 1W2z 1‘/21, 1’021,W21,‘/21] H [02] 1y 92;]] = BnlBZ: o BZ:

i=1 Jj=i+1
Now we have

N fale), 1 <ig2l
fopl,n(ez)_{ 1, 2l+1 SZS?(l+n)

and

vo Jognle), 1 <i<2l
gOpl,n(ez)—{ 1, 20+1 <i<2(l+n)

So by the Fundamental Lemma 1.2, equation (1) above implies that
(f ©Pin, g © prn) has the Wecken property.

Finally, we can assume that the point p which appears in the definition
of the function p;,, does not belong to coin(f,g). So coin(f o py s,

gopin) Biny coin( f, g) is an homeomorphism, which induces a map among
the Nielsen classes. This induced map is certainly surjective and is also
injective because pynx(m1(Si4n) — m(S))) is surjective. So we have a
bijection among the Nielsen classes which certainly preserves indexes,
and the result follows. g

REMARK. The above result suggests the natural question of finding
the minimum integer n for which (f opp 4, g0 pn,) has the Wecken prop-
erty. In case one of the maps is the identity, the answer is known in a
reasonable number of cases. See e.g. [11].

To finish this section, we prove a proposition which tells us that, in
order to minimize coin, it suffices to change one function, at least when
the target space is a manifold. This geometric fact is certainly useful.

Let f,g: M — N be two continuous maps where M is a topological
space, and N is a manifold. Let u(f,g) = #com( f',¢') and

5] 'e
m(f,9) = mln #coin(f, g').
PROPOSITION 1.5. For any pair (f,g) : M — N we have u(f,g) =
,ul(fa )

Proof. Consider the fibered pair (N x N,N x N — A) =5 N (see
[5]), where p; is the projection on the first coordinate. Certainly we



250 - Daciberg L. Gongalves

have u(f,g9) < pi(f,g). So it suffices to show that wm(f,9) < ulf,g).
For this let (f',g’) such that #coin(f',¢') = k. We have that 7, :

M x M — N are homotopic where f(z,y) = f(z) and f (z,y) = f(z).
Call H such homotopy. The map f’ has a lift, namely (f',¢') such that
(f',9")(M —coin(f’,¢')) C Nx N —A. By the lifting property of fibered
pairs it follows that there is a lift H of H such that & (M —coin(f',¢')) C

NxN-A. SoH(, 1) = (£,9") and coin(f, g") C coin(f’, ¢'). Therefore
#coin(f, g") < #coin(f’, ¢') and the result follows. O

Although the above result is known in a more general form, we decided
to include it with this proof since it is simpler than the one in [2].

2. Root case and coincidence of maps into the torus

Let S be an orientable surface, T the torus and f,g : S — T two
maps. Now, if we identify T with S* x S, then T has a group structure
given by the complex multiplication in each coordinate. So we consider
the maps h(z) = g(z)/f(x) and c(z) = e, where e € T is the identity
element with respect to the above multlphcatlon

PROPOSITION 2.1. We have coin(f,g) = coin(h,c) and N(f,g) =
N(h,c). Further (f,g) has the Wecken property if and only if we can
find a map hy homotopic to h such that #h7*(1) = N(f,g).

Proof. Tt is clear that #coin(f,g) = #coin(h,c). Also, the Nielsen
classes of (f, g) and (h, c) are the same. For let z,y € com(f, 9),A: 1>
S, A(0) = 2, A(1) = y with f(\) ~ g()) relative to the end points and
let H be a homotopy. Then H(s,t) = H(s,t)/f(A(s)) gives a homotopy
relative to the end points between A()\) and c()). To see that a class
has the same index with respect to both pair of maps, let us consider
the map ¢ : (T xT,T x T — A) — (T, T — {1}) given by ¢(z,y) = y/z.
This is a well defined map of the pairs and ¢* : H*(T,T — {1}) —
HYT xT,T x T — A) takes the fundamental cohomology class to the
Thom class. But ¢ o (f,g) = ¢ o (h,c). So a Nielsen class has the same
index either with respect to ( f, 9) or (h,c).

Finally, by Proposition 1.5, in order to minimize coincidence, it suf-
fices to deform one of the maps, let us say h, so the result follows.
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From now on let h : S — T be a map and let hy : Hi(S) = Hi(T) be
ai b1 cer Gy bg
‘ & dy o+ ¢y dg
of genus g. Let A(h, c) be the Lefschetz coincidence number and deg(h)
the degree of h.

PROPOSITION 2.2. We have A(h,c) = deg(h). If deg(h) = 0 then
N(h,c) = 0. If deg(h) # O then N(h,c) = #coker(hy) and each Nielsen
class has index equal to deg(h) divided by N(h,c).

given by hy = ( ), where S is a compact surface

Proof. The above result is true in general, i.e., whenever S and T are
orientable manifolds of the same dimension. This follows from Proposi-
tion 5 of {17} and Corollary 7.3 of [14], or [18]. O

Now we will derive the algebraic condition for (h,c) to have the
Wecken property. When deg(h) is not zero, then we certainly have that
b (m1(S))<my (T) has finite index. Denote by {@, ... ,&n} a set of repre-
sentatives of the elements of the Reidemeister classes my(T")/hyu(m1(S)).
Let us pick a base point z¢ for S and yp for T, where yo is close to
1 € T. Denote by j : T — {1} — T the inclusion, by F(z,y)
m(T — {1}) the free group on two generators and B, = aBa™, wy;y
Ty, wy = x%y%. As before, let B = [z,y], N = [F, F] and hy

ap by - ay by
g dy - ¢y dg )7
PROPOSITION 2.3. Let h : S — T. Then there exists hy ~ h such
that #h71(1) = N(h,c) iff
(a) If deg(h) = O then the equation

o

g
[1102i-1w2i1, 020w2] = 1
i=1
has a solution 6; € N = [F,F],i=1,...2g.
(b) If deg(h) = m # 0, let r = #coker(hy) and k = m/r. Then the
equation
g
H[92i-lw2i—la foiwy;) = B¥.BE .- BE
i=1
has a solution for some §; € N and for some set of representatives

= _ . T
{1,a,,...,a} of the quotient ———uﬂh#"(‘,,l(s))-
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Proof. The proof follows from the Fundamental Lemma 1.2. It is
enough to notice that since the second map is the constant map, the
equation given in part b) of the Fundamental Lemma 1.2 is in fact an
equation in the subgroup Fj, where F} is defined in Definition 1.1. O

In the special case where N(f,g) = 0, we will show, in a geometric
way, that (f, g) satisfies the Wecken property.

LEMMA 2.4. In order to show that a pair with N(h,c) = 0, has the

Wecken property, it suffices to consider the case where hy(mi(S)) =
™ (T)

Proof. If the rank(hx(m1(S))) < 2 then we can deform & to h; such
that h; (S) lies inside a curve which does not contain 1 € T. If hy(m,(S))
has rank two, take T -2 T the ﬁnlte cover which corresponds to the
subgroup hy(m,(S)) and let k : S — T be the lifting of . So h: S — T
has the property that h# : m(S) — m(T) is surjective. If i can be
deformed to a map which is not surjective, then it can be deformed to
the one skeleton of 7' which we assume that does not intersect p (1),
where p : T — T is the cover map, and the proof is done. |

Let v C S, be an embedded curve. We let hy : Sg — S be a
map defined as follows: take a tubular nelghbourhood of v and let ¢ :
v % [~¢€,€] = S, be an homeomorphism onto that tubular neighborhood
of v. Now we deﬁne

— eﬂTﬁ if z= Qo(xlat)
ha(2) = { —~1 otherwise.

Roughly speaking, the homology class represented by 7 is the Poincaré
dual of the cohomology class h#(w,) € H'(S,) with proper orientations,
where w; is a chosen generator of H'(S?). See [8], Part II and [19] for
more details.

Let h: Sy — T and

_ a; bl ag b2 Tt Qg bg
h#—(Cl d1 Co d2 Gy dg )

We will assume from now on that degh = A(h,c) = 0 and hu(m,(S)) =
™1 (T)
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PROPOSITION 2.5. The elements (ay, by, ... ,a4,b,) and (a1, ds,. ..,
Cgydg) INZ O - - - @ Z are indivisible.
29
Proof. This follows from the fact that hy(m1(S)) = m(T). a

Let v, resp. 72 be two connected closed simple curves which represent
the homology classes (a1, b1, ... ,a4,b,) resp. (c1,d1,...,Cq dg). Such
curves do exist, see e.g. [8] or [21] section 3.6. We can assume that these
curves intersect transversally.

PrROPOSITION 2.6. The intersection number of these curves is zero.
Proof. See [3], chapter VIII, 13 or [21] section 3.6. O

Now we will modify one of the curves, -y, for example, so that the
new curve v; has the following properties: a) -, is a simple curve, not
necessarily connected; b) 7] represents the same homology class as vy;
c) 1Ny =0.

PROPOSITION 2.7. Given y; and vy, we can construct 7y, as above.

Proof. The argument used to construct «; can be found in [8], appen-
dix. The figure below gives the idea of the construction. Namely, for
each two consecutive points with intersection number +1 and —1 we get
a new curve as shown below.

Since the number of points in the intersection is finite the process
ends after a finite number of steps and we get the curve 7] with the
required properties. 0O

THEOREM 2.8. Given f,g:S — T such that N(f, g) = 0 then (f, g)
can be deformed to a pair (f', g’') which is coincidence free.

Proof. Tt suffices to consider the map h(z) = g(z)/f(z) and to show
that h can be deformed to A’ such that 1 ¢ A'(S). We can also assume,
by Lemma 2.4, that hy(n1(S)) = m(T). Let 7| and -y, be the two
curves given by proposition 2.7. So we have two maps A, h,, : S — St
Therefore we have hy = (hy, hy,) : S — T. Certainly

A1) =R NAL ) =nNrn =0

So h7*(1) = and h; is certainly homotopic to h because they induce
the same homomorphism on 7; or H,. i
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Y

Figure III.

REMARK 1. Givenamap h:S; — S, between any two compact ori-
entable surfaces, it is known that if deg(h) = 0, then A can be deformed
to a map which is not surjective. This is a consequence of deep results
of Kneser, as it was pointed out in [4]. For this purpose you can also see
[15], [16] and [21] section 3.3. This, in particular, shows, by means of
the Fundamental Lemma 2.1, that certain quadratic equations on free
group have solutions. It is not clear how to provide an explicit solution
or even how to show algebraically, that such equations have a solution.

REMARK 2. Theorem 2.8 is certainly not new. In fact, it is weaker
than the results pointed out in Remark 1. Nevertheless, we believe that
the proof we presented here may have its own interest.

REMARK 3. In general, one can not expect that (h, c) has the Wecken
property. The first example of a map h : S — T, S, being the surface of
genus 2, where (h, ¢) does not satisfy the Wecken condition, was given in
[9]. This naturally brings up the question of trying to classify the maps
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h such that (h,c) satisfies the Wecken condition. A joint work with H.
Zieschang is in preparation and discuss this question.

REMARK 4. We believe that the connection between geometry and
algebra given in the Fundamental Lemma, looks worthwhile exploring.
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