PRODUCTS OF MANIFOLDS AS CONDIMENSION k FINBRATORS

  • Im, Young-Ho (Department of Mathematics, Pusan National University)
  • Published : 1999.02.01

Abstract

In this paper, we show that any product of a closed orientable n-manifold $N_1$ with finite fundamental group and a closed orientable asgerical m-mainfold $N_2$ with hopfian fundamental group, where X($N_1$) and X($N_2$) are nonzero, is a condimension 2 fibrator. Moreover, if <$\pi_i(N_1)$=0 for 1$N_1\timesN_2$ is a codimension k PL fibrator.

Keywords

References

  1. Topology Appl. Finite groups and approximate fibrations N. Chinen
  2. Rocky Mountain J. Math. v.7 Approximate fibrations D. S. Coram;P. F. Duvall
  3. Pacific J. Math v.72 Approximate fibrations and a movability condition for maps D. S. Coram;P. F. Duvall
  4. Compositio Math. v.55 Decompositions into codimension one submanifolds R. J. Daverman
  5. Topology Appl. v.33 Submanifold decompositions that induce approximate fibrations R. J. Daverman
  6. Indiana Univ. Math. J. v.45 no.2 3-manifolds with geometric structure and approximate fibrations R. J. Daverman
  7. Compositio Math. v.86 Hyperhopfian groups and approximate fibrations R. J. Daverman
  8. Michigan Math. J. v.41 The PL fibrators among aspherical geometric 3-manifolds R. J. Daverman
  9. Topology Appl. v.66 Manifolds that induce approximate fibrations in the PL category R. J. Daverman
  10. Pacific J. Math. v.170 no.2 On proper surjections with locally trivial Leray sheaves R. J. Daverman;D. F. Snyder
  11. Topology Appl. v.19 Decompositions into codimension two spheres and approximate fibrations R. J. Daverman;J. J. Walsh
  12. Bull. Austral. Math. Soc. v.56 Hopfian and co-Hopfian groups S. Deo;K. Varadarajan
  13. Geometry and Topology, Lecture notes in Pure and Applied Mathmatics Geometric hopfian and non-hopfian situations J. C. Hausmann;Marcel Dekker(ed.)
  14. Trans. Amer. Math. Soc. v.141 Some theorems on hopficity R. Hirshon
  15. Topology Appl. v.56 Decompositions into codimension two submanifolds that induce approximate fibrations Y. H. Im
  16. Houston J. Math. v.214 no.2 Products of surfaces that induce approximate fibrations Y. H. Im
  17. Hopfian and strongly hopfian situations Y. H. Im;Y. Kim
  18. Math. Z. v.185 A vanishing theorem for Euler characteristics S. Rosset
  19. Introduction to piece-wise linear topology C. Rourke;B. J. Sanderson
  20. J. London Math. Soc. v.8 no.2 On a theorem of C. B. Thomas G. A. Swarup